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Active Learning for Web Search Ranking via Noise Injection

WENBIN CAI, MUHAN ZHANG, and YA ZHANG, Shanghai Jiao Tong University

Learning to rank has become increasingly important for many information retrieval applications. To reduce
the labeling cost at training data preparation, many active sampling algorithms have been proposed. In this
article, we propose a novel active learning-for-ranking strategy called ranking-based sensitivity sampling
(RSS), which is tailored for Gradient Boosting Decision Tree (GBDT), a machine-learned ranking method
widely used in practice by major commercial search engines for ranking. We leverage the property of GBDT
that samples close to the decision boundary tend to be sensitive to perturbations and design the active
learning strategy accordingly. We further theoretically analyze the proposed strategy by exploring the con-
nection between the sensitivity used for sample selection and model regularization to provide a potentially
theoretical guarantee w.r.t. the generalization capability. Considering that the performance metrics of rank-
ing overweight the top-ranked items, item rank is incorporated into the selection function. In addition, we
generalize the proposed technique to several other base learners to show its potential applicability in a wide
variety of applications. Substantial experimental results on both the benchmark dataset and a real-world
dataset have demonstrated that our proposed active learning strategy is highly effective in selecting the
most informative examples.
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1. INTRODUCTION

With the rapid growth of Internet and web service technology, ranking has become
essential to many information retrieval (IR) applications such as web search and
recommendation. Learning to rank is to automatically generate ranking functions
through supervised learning. Like many other supervised learning tasks, training a
high-quality ranking function usually requires a large number of labeled examples. In
a typical setting, training data are randomly selected with certain presumed distribu-
tions and annotated by trained editors. This data collection process is called passive
learning. However, in many real-world learning-to-rank applications, it is very expen-
sive to collect a sufficiently large labeled set to ensure model quality. In fact, not all
of the data selected with passive learning contribute positively to the performance of
the ranking model. To reduce the unnecessary annotation cost, active learning aims
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to selectively label the most informative examples. A typical active learning process
can be summarized as follows: (1) generate a base model from a small initial training
set, (2) select examples with a sampling function from a large set of unlabeled data
and label them, and (3) add the newly labeled examples to the training set and retrain
the model. This sampling process is repeated until a certain performance expectation
is met or the labeling budget is used up. The key idea behind active learning is that
if a learner is allowed to choose the data from which it learns, it can achieve better
performance with fewer labeled instances.

So far, active learning has been extensively studied for classification problems. Uncer-
tainty sampling, a widely adopted active learning strategy, aims to choose the examples
that are closest to the decision boundary. Take binary classification for instance: uncer-
tainty sampling is to choose the examples whose posterior probabilities are nearest 0.5
[Lewis and Gale 1994]. For nonprobabilistic learning classifiers such as support vector
machines (SVMs), this strategy selects the data points that are closest to the separat-
ing hyperplane [Tong and Koller 2001]. Another classical active learning framework
is query by committee (QBC), which generates a committee of models and selects the
examples with the greatest disagreement among the members [Freund et al. 1997].

Compared to active learning for classification, active learning for ranking faces some
unique challenges. First, there is no notion of margin in ranking, and therefore many
of the margin-based active learning strategies are not readily applicable. Further, dif-
ferent from the classification-oriented performance metric where data examples are
treated and evaluated independently of each other, the performance metrics for rank-
ing are based on the ranked list; that is, the data examples are not independently
and individually evaluated. Thus, even some straightforward active learning strategy,
such as QBC, has not been justified for ranking problems. Finally, the dominant per-
formance metrics for ranking such as Discounted Cumulative Gain (DCG) [Jarvelin
and Kekalainen 2000] put more weights on the top-retrieved items in a ranked list.
As a consequence, we need to take particular consideration of this ranking-specific
characteristic into designing a data sampling function.

Focusing on ranking tasks, one can categorize existing learning-to-rank approaches
into three major groups: pointwise approaches [Cossock and Zhang 2006], pairwise
approaches [Cao et al. 2006], and listwise approaches [Xia et al. 2008]. In recent years,
many active learning-for-ranking algorithms have been specifically proposed. Most
of them perform the sample selection either at the query level [Yilmaz and Robertson
2009; Cai et al. 2011; Bilgic and Bennett 2012; Qian et al. 2013] or at the document level
[Silva et al. 2011; Donmez and Carbonell 2008; Yu 2005; Aslam et al. 2009; Ailon 2011].
The query-level active learning selects all documents associated with an informative
query, and the document-level active learning selects documents individually. Recently,
with particular consideration of the query–document structure in ranking data, there
is a small amount of work integrating the query-level and the document-level sampling
[Long et al. 2010; Cai and Zhang 2012], which first selects the most informative queries
at the query level and then selects the most informative documents related to the
selected queries.

Gradient Boosting Decision Tree (GBDT), which has been extensively employed as
the state-of-the-art model in many ranking tasks in recent research [Chapelle et al.
2010, 2011; Shen et al. 2013], represents a pointwise approach that is widely used in
practice by commercial search engines such as Yahoo and Yandex. Therefore, an active
learning-for-ranking strategy targeting GBDT as the base ranker is of great need in
the ranking community.

Following the uncertainty-based sampling principle, we aim to identify the close-to-
boundary examples, which is a nontrivial task for decision-tree-based models (GBDT-
based pointwise ranking is regression in fact). First, unlike SVMs, there is no clear
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definition of the distance between data points and decision boundaries in GBDT, and
therefore the distance-based uncertainty sampling approach is unapplicable. Further-
more, the examples located in the same decision region will definitely receive the same
predicted scores, and thus we cannot distinguish the close-to-boundary examples from
others with predicted scores. To the best of our knowledge, there is very limited work
on active learning for ranking targeting GBDT as the base ranker.

In this article, we propose a novel active learning strategy tailored for ranking
with GBDT. Unlike the max-margin-based models, decision-tree-based methods, where
there exist clearly defined decision regions, tend to be sensitive to noise perturbations
in the data. We attempt to leverage this property of GBDT in designing the active
learning strategy. Moreover, considering that most of the ranking metrics are based on
ranked lists and more weights are put on top-ranked items such as DCG, item rank is
incorporated into the selection function to overweight the top-ranked items.

Leveraging the property that decision-tree-based methods are sensitive to noise per-
turbations, we utilize noise injection to perturb data and generate a set of noisy copies
for each example. Clearly, if the corresponding noisy copies of an example have var-
ious predicted scores (i.e., crossing the decision boundary after noise perturbation),
this data point is expected to be close to the decision boundary of the current model
(i.e., sensitive to noise perturbation). We name this method of identifying the close-
to-boundary data examples as sensitivity sampling (SS). Moreover, we theoretically
analyze this technique by exploring the connection between the sensitivity defined for
sample selection and the regularization to provide a potentially theoretical foundation
w.r.t. the model’s generalization performance.

For the ranking tasks, because we are mainly interested in the resulting ranking list
focusing on the top-retrieved items rather than the actual predicted ranking scores, we
tailor the proposed sensitivity sampling to derive a novel active learning strategy for
ranking called ranking-based sensitivity sampling (RSS). First, the score distribution
generated with noise injection is transformed to the rank distribution. Then, using a
DCG-like gain function to measure each possible ranked list, the examples having the
highest expected variation in the gain value are selected, that is, those most sensitive to
noise perturbation in terms of ranking. Considering the query–document structure in
ranking data, we investigate the RSS strategy at both the query level and the document
level. Extensive experimental results on both the benchmark LETOR 4.0 dataset and a
real web search ranking dataset from a commercial search engine have demonstrated
that our proposed active learning strategy can achieve better performance than the
state-of-the-art methods.

The proposed noise-injection-based active learning strategy is generic. In this study,
we further generalize it to RankSVM and classification tree to show its applicability in
a wide variety of applications. Empirical studies are performed on several benchmark
datasets, and the results show the effectiveness of our proposed algorithms.

The main contributions of this article are summarized as follows:

—We propose a novel noise-injection-based method, SS, which is targeted on tree-based
models to identify the close-to-boundary data examples.

—We theoretically analyze the proposed sensitivity sampling approach by deriving
the connection between the sensitivity defined for sample selection and the model
regularization to provide a potentially theoretical support of its generalization ability.

—We further tailor the proposed SS principle for learning to rank and derive a new
active learning-for-ranking approach called RSS, which is highly effective in choosing
the most informative examples in ranking.

—Moreover, we generalize the noise-injection-based active learning strategy to several
other base learners to show its applicability in a wide range of applications.
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The remainder of this article is organized as follows. Section 2 provides a brief review
of the related work. Section 3 briefly introduces the GBDT model. Section 4 presents the
SS to identify the close-to-boundary examples through noise injection. The proposed
active learning-for-ranking strategy, ranking-based sensitivity sampling, is presented
in Section 5. Section 6 presents the experiments and interprets the results. We general-
ize the noise-injection-based active learning strategy to several other popular learners
in Section 7. Finally, Section 8 concludes the article and proposes future directions.

2. RELATED WORK

The objective of active learning is to achieve high model performance using as few
labeled examples as possible, thereby minimizing the cost of data labeling. Active
learning is well motivated in many supervised learning tasks where unlabeled data
may be abundant but labeled data examples are expensive to obtain. In this section,
we first briefly review related work on active learning and then discuss existing active
learning-for-ranking algorithms.

2.1. Active Learning

So far, various active learning strategies have been proposed. A comprehensive active
learning survey is given in Settles [2012].

One common strategy is called uncertainty sampling [Lewis and Gale 1994; Tong
and Koller 2001], which aims to choose the examples whose labels the current model
is least certain about. This strategy is usually straightforward for probabilistic models
using entropy to measure the uncertainty. For the nonprobabilistic models such as
SVMs, this strategy selects the examples which are close to the separating boundary
[Tong and Koller 2001].

QBC is another typical active learning framework, which generates a committee of
model members and select unlabeled data instances about which the models disagree
the most [Freund et al. 1997]. A popular function to quantify the disagreement is vote
entropy. To efficiently generate the committee, popular ensemble learning methods,
such as Bagging and Boosting, have been employed [Abe and Mamitsuka 1998].

Another decision-theoretic active learning strategy is to minimize the generalization
error of the model. Roy and McCallum [2001] proposed an optimal active sampling
method to choose the example that leads to the lowest generalization error on the
future test set once labeled and added to the training set. The weakness is that the
computational cost of this method is extremely high. Instead of choosing the example
yielding the smallest generalization error, Nguyen and Smeulders [2004] suggested to
query the instance that has the largest contribution to the current error. Chon et al.
[1996] proposed a statistically optimal active learning approach, which aims to choose
the examples minimizing the output variance to reduce the generalization error.

2.2. Active Learning for Ranking

Compared to the traditional supervised learning problems, a unique query–document
structure exists in the ranking data and leads to a unique data dependence relationship;
that is, each query is independent of each other, and the query–document pairs are
conditionally dependent given a query. Most of the existing active learning-for-ranking
algorithms can be categorized into two types: the query-level active learning and the
document-level active learning.

For query-level active learning, Yilmaz and Robertson [2009] empirically showed
that having more queries but shallow documents performed better than having fewer
queries but deep documents. Yang et al. [2009] presented a greedy sampling method for
query selection by maximizing a linear combination of query difficulty, query density,
and query diversity. Cai et al. [2011] proposed a query selection strategy by combining
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domain adaptation and QBC-based active learning. Bilgic and Bennett [2012] intro-
duced a query sampling algorithm that generalizes the usability of Expected Loss
Optimization (ELO) [Long et al. 2010] to any base ranker. In recent development, Qian
et al. [2013] introduced a pairwise query selection method under a layered hashing
framework.

For document-level active learning, Aslam et al. [2009] empirically compared sev-
eral document selection strategies for ranking, for example, depth-k pooling, uniform
random sampling, and so forth. Yu [2005] proposed a novel document-level active
sampling algorithm, which treats the document pairs with similar predicted rele-
vance scores as the most informative examples. The document sampling is applied
to RankSVM [Herbrich et al. 2000], which represents a classical pairwise learning-
to-rank approach. Donmez and Carbonell [2008] proposed a theoretical document se-
lection algorithm to query the documents that are expected to maximally change the
current ranking model. The base ranking functions are RankSVM and RankBoost
[Freund et al. 2003]. Based on statistical learning theory, Ailon [2011] analyzed the
query complexity for pairwise ranking. Silva et al. [2011] proposed a novel document
sampling algorithm based on association rules, which does not rely on any initial
training seed.

Taking particular consideration of the query-document structure in the ranking
data, Long et al. [2010] proposed a two-stage framework that integrates the query-level
active learning and the document-level active learning. Under the Bayesian framework,
the ELO principle is introduced for active learning. Recently, Cai and Zhang [2012]
proposed a novel active learning-for-ranking strategy, which is to choose the examples
with the largest variance in terms of ranking through noise perturbation.

While most of the existing active learning-for-ranking algorithms are applied to
pairwise learning-to-rank approaches (e.g., RankSVM), there is still very limited work
targeting pointwise approaches such as GBDT. Due to the significant role of GBDT
in ranking tasks, a targeted active learning strategy for GBDT is of great need. In
this study, we extend our previous work [Cai and Zhang 2012] by two major addi-
tional contributions: (1) we theoretically analyze the proposed sensitivity sampling
approach by deriving the connection between the sensitivity defined for sample selec-
tion and the model regularization to provide a potentially theoretical support of its
generalization ability, and (2) we generalize the noise-injection-based active learning
strategy to several other base learners to show its applicability in a wide spectrum of
applications.

3. A BRIEF INTRODUCTION OF GRADIENT BOOSTING DECISION TREE

In this section, we briefly introduce the base ranker, GBDT, employed in this study.
More details about GBDT can be found in Friedman [2001].

Decision tree model. Given the training set {(xi, yi), xi ∈ X , yi ∈ Y}n
i=1, the decision-

tree-based model partitions the space of all joint predictor variable values into disjoint
regions Rj , j=1, 2, . . . , J as represented by the terminal nodes of the tree. A constant
γ j is assigned to each such region and the predictive rule is

x ∈ Rj ⇒ f (x) = γ j . (1)

The γ j is the average of yi in the terminal region Rj :

γ j = Avexi∈Rj yi = 1
Nj

∑
xi∈Rj

yi, (2)
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where Nj is the number of data points within the region Rj . Thus, a J-terminal node
tree can be formally expressed as

tree(x) =
J∑

j=1

γ j1(x ∈ Rj), (3)

where 1(·) denotes the indicator function.
Gradient Boosting Decision Tree. Under the functional gradient boosting frame-

work, the crucial idea of GBDT is to repeatedly fit a J-terminal node regression tree
to the residual: rit = yi − ft−1(xi) (at the tth iteration). As in Friedman [2001], f0(x) is
initialized as f0(x) = ∑

yi/n, which can be regarded as a single terminal node tree. The
update rule is

ft(x) ← ft−1(x) + λt

Jt∑
j=1

γ jt1(x ∈ Rjt), (4)

where λt denotes the shrinkage factor, and γ jt is the average of the residual in each
terminal region Rjt:

γ jt = 1
Njt

∑
xi∈Rjt

(yi − ft−1(xi)). (5)

Thus, GBDT can be formally expressed as an additive model with the special case that
each base function is a regression tree:

f (x) = f0(x) +
T∑

t=1

λt

Jt∑
j=1

γ jt1(x ∈ Rjt), (6)

where T denotes the number of individual trees in GBDT. In recent development,
GBDT has been extensively employed as the state-of-the-art learning algorithm in
many ranking tasks [Chapelle et al. 2010, 2011; Shen et al. 2013]. In the following, we
present our active learning strategy that is particularly tailored for GBDT.

4. SENSITIVITY SAMPLING VIA NOISE INJECTION

The classical uncertainty sampling strategy treats the examples that are close to the de-
cision boundary as the most informative ones. This strategy is usually straightforward
to implement for probabilistic models. Taking binary classification as an example, un-
certainty sampling aims to select the examples whose posterior probabilities are closest
to 0.5 [Lewis and Gale 1994]. For the nonprobabilistic models such as SVMs, this strat-
egy selects the instances that are close to the separating hyperplane [Tong and Koller
2001]. However, in many state-of-the-art learning algorithms having clearly defined
decision regions (e.g., the decision-tree-based models such as GBDT), it is nontrivial to
identify the close-to-boundary data instances.

As mentioned in the previous section, decision trees are sensitive to noise pertur-
bations in the data. For the decision-tree-based models, if a data example is close to
the decision boundary, a small perturbation in feature space may make it cross the
decision boundary and result in a change in the predicted score. On the contrary, if
a data example is far away from the decision boundary, the predicted score under
reasonable perturbation will remain consistent. Based on this intuition, we propose a
novel method called sensitivity sampling, which leverages noise injection to identify
the close-to-boundary instances.
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Fig. 1. An illustration of noise injection. Examples A and B are far away from the decision boundary, so that
the noisy copies stay in the same region with the original examples. In contrast, example C is very close to
the decision boundary, and hence its noisy copies tend to cross the boundary.

In the rest of this section, we first introduce the noise injection process. Then, we
derive a novel approach called sensitivity sampling to identify the close-to-boundary
examples. Finally, we theoretically analyze the proposed sensitivity sampling approach
by deriving the connection between the sensitivity used for sample selection and model
regularization to provide a potential guarantee of its generalization performance.

4.1. Noise Injection

Let x be a data example in the unlabeled dataset (denoted by pool set). Noise injection
distorts x by adding some random noise ε to the features of x and generates m noisy
copies around x. We formulate noise injection as follows:

xk = x + εk, k = 1, 2, . . . , m, (7)

where εk is the noise injected. In this study, we assume the noise ε to be a zero-centered
Gaussian vector with independent coordinates:

E[ε] = 0, E[εεT] = σ 2I, (8)

where I is the identity matrix. Our choice of Gaussian noise is motivated by previous
work [Bishop 1995; Matsuoka 1992] on the theoretical demonstration of the connection
between noise injection and the learning model’s generalization performance.

Figure 1 illustrates the outcome of noise injection in a two-dimensional feature space.
Points A and B are far away from the decision boundary, so that their corresponding
noisy copies stay in the same region as the original examples. On the contrary, data
example C is very close to the decision boundary, and thus its noisy copies tend to cross
the boundary.

4.2. Sensitivity Sampling with Noise Injection

It is easy to see that a data point that crosses from one decision region to another will
receive a different predicted value, and therefore examples near the decision boundary
will be most prone to such phenomena after noise distortion.

The variation of the model’s output with respect to the example x due to the pertur-
bation with noise ε can be formulated as

Varε(x) = f (x + ε) − f (x), (9)
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where f (.) represents the current model. The sensitivity of the model with respect to a
single example x is then defined as the expected variation after noise injection:

S(x) = Eε[||Varε(x)||2] = 1
m

m∑
k=1

|| f (x + εk) − f (x)||2, (10)

where m is the number of noisy copies generated with Gaussian noise, and Eε[.] denotes
the expectation over m noisy copies.

Clearly, if a data example x is close to the decision boundary, noise perturbation will
result in a large value of sensitivity. Otherwise, the value of sensitivity will be small
or even 0. Hence, the sensitivity defined is a reasonable measurement to estimate the
distance between the data example x and the decision boundary. As a consequence,
the SS principle, which aims at selecting the close-to-boundary examples, can be
represented as

x∗
SS = arg max

x∈U
S(x), (11)

where U is the pool set, and x∗
SS denotes the unlabeled example in the pool set, which

is expected to be closest to the current decision boundary.

4.3. Theoretical Analysis

In machine-learning problems, the ultimate goal is to learn a model f (.) with good
generalization performance. The generalization error can be formulated as

Err =
∫
X×Y

L[ f (x), y(x)]dP(x, y)

=
∫
X

∫
Y
L[ f (x), y(x)]p(y|x)p(x)dydx, (12)

where y(x) and f (x) are the true label and the predicted label of the example x, respec-
tively. L[ f (x), y(x)] is a given loss function.

Here, we focus on the squared-error loss since the pointwise ranking is a regression
problem. Thus, the generalization squared error can be written as

Err =
∫
X

EY [( f (x) − y(x))2|x]p(x)dx, (13)

where EY [.] denotes the expectation over p(y|x). Furthermore, the expectation inside
the integral can be decomposed as follows [Hastie et al. 2001]:

EY [( f (x) − y(x))2|x] = σ 2
ε + (EY [ f (x)] − y(x))2 + (EY [ f (x) − EY [ f (x)]])2

= Unavoidable Error + Bias2 + Variance. (14)

As shown, the last two terms compose the expected squared error of the learned regres-
sion function.1 The bias term represents the structural error due to the model class
itself, and the variance term denotes the approximation error on the finite training
data due to the high complexity of the model. For a high-variance model with fixed
complexity (e.g., a decision-tree-based model with given size), a practical solution to
reduce the variance is to add more examples to the training set, therefore improving
the model’s generalization performance. For active learning, we are not able to change

1Although there is as yet no agreed-upon formalism for the definitions of bias and variance for other tasks
such as classification, the bias-variance decomposition still holds (e.g., [Valentini and Dietterich 2004]).

ACM Transactions on the Web, Vol. 9, No. 1, Article 3, Publication date: January 2015.



Active Learning for Web Search Ranking via Noise Injection 3:9

the model complexity during the sampling process. Hence, a straightforward gener-
alization of this practical solution is to actively select the examples lying in complex
regions and add them to the training set, thereby reducing the prediction variance due
to the complex parts of the model learned. In the following, we attempt to derive the
connection between the sensitivity defined for sample selection and model complex-
ity. In particular, we aim to show that the sensitivity is highly correlated with model
regularization, which is usually introduced during parameter estimation in the model
fitting step to control the model complexity.

We generalize the sensitivity for a single example x to the entire pool set to define
the sensitivity of the model because the pool set is usually large enough to capture the
data distributions in active learning cases:

S( f ) = Ex[S(x)] = ExEε[||Varε(x)||2]. (15)

Using the first-order Taylor expansion, the variation of the model’s output with noise
injection can be expressed as

Varε(x) = ∇ f (x)Tε + o(ε2)
≈ ∇ f (x)Tε, (16)

where ∇ f (x) denotes the derivative of f (.) with respect to x. According to Equation (16)
, the sensitivity of the learning model can be represented as

S( f ) = ExEε[Varε(x)TVarε(x)]
≈ ExEε[(∇ f (x)Tε)T∇ f (x)Tε]
= ExEε[tr(∇ f (x)TεεT∇ f (x))]
= σ 2

Ex[tr(∇ f (x)T∇ f (x))]
= σ 2

Ex[||∇ f (x)||2], (17)

where tr(.) stands for the trace calculation. In the following, we consider two cases to
explore the relationship between the sensitivity defined previously and regularization:
the linear model and the nonlinear model.

Case 1 (linear case). A linear learning model is the one that involves a linear
combination of the input features

f (x) = θTx + b. (18)

The bias term b is usually omitted for simplicity. In fact, it is easy to employ the bias
by padding an extra dimension of all 1s. The derivative of the linear function is

∇ f (x) = ∇(θTx) = θ. (19)

Combining Equation (17) and Equation (19), we have

S( f ) ≈ σ 2||θ ||2, (20)

which is equivalent to the classical regularization term added to the loss function in
the model fitting process, with the coefficient of the regularizer determined by the noise
variance σ 2.

Case 2 (nonlinear case). Here, we take the GBDT model, which is employed as
the base ranking function in this study, as an example. According to Equation (6), the
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Fig. 2. An example to illustrate the relationship between the sensitivity and the size of a decision tree
model. The left one is a small tree model, and the right one is a relatively complex tree model with more
decision boundaries. With more close-to-boundary data examples, the sensitivity of the large tree model is
higher than the small decision tree.

derivative is calculated as

∇ f (x) =
T∑

t=1

λt∇
Jt∑

j=1

γ jt1(x ∈ Rjt)

=
T∑

t=1

λt

Jt∑
j=1

1
Njt

∇
∑

x∈Rjt

rit1(x ∈ Rjt). (21)

Because the function
∑

x∈Rjt
rit1(x ∈ Rjt) is not continuous, we cannot calculate the

derivative ∇ f (x) directly. However, we see that the derivative is directly correlated
with the term 1/Njt. In the decision-tree-based model, the number of examples Njt
located in a single region Rjt is inversely related to the size of the tree. Consequently,
the derivative ∇ f (x) can be rewritten as a function taking the tree size as a variable.
After the expectation calculation via Equation (17), it is straightforward to derive that
the sensitivity is indeed a function of the size of the boosted trees. In other words, the
sensitivity defined is highly correlated with the classical regularization term, the size
of the tree, for the tree-based model. Figure 2 presents an illustrative example to show
the link between the sensitivity and the size of a decision tree model. The left one is a
small tree model (denoted as f1), and the right one (denoted as f2) is a relatively large
tree model with more decision boundaries. Compared to the small tree f1, there are
more data instances that tend to cross decision boundaries after noise perturbation,
and therefore the sensitivity of f2 is higher than f1.

We have shown that the sensitivity defined closely connects to the classical regular-
ization term. Our approach aims to pick data points located in the complex regions (e.g.,
the complex regions of the GBDT with many decision boundaries) to greatly reduce the
prediction variance due to the complex parts of the model learned, thereby improving
the model’s generalization performance.

5. SENSITIVITY SAMPLING FOR RANKING

In ranking applications, because we are mainly interested in the ranked list focusing on
the top-ranked items rather than the absolute value of the predicted ranking score, we
tailor the proposed sensitivity sampling principle for ranking tasks. In this section, we
first detail the process to transform the score distribution, which is generated with noise
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Fig. 3. The process to generate rank distribution.

injection, to the rank distribution. We then derive a novel active learning-for-ranking
strategy called ranking-based sensitivity sampling. Considering the query–document
structure in the ranking data, the RSS approach is derived at both the query level and
the document level.

5.1. Rank Distribution Generation

Similar to SoftRank [Taylor et al. 2008], we assume that each ranking score is non-
deterministic and is sampled from a certain score distribution. Previous work [Taylor
et al. 2008] has assumed that the distribution of scores follows a given equal variance
Gaussian distribution. However, the assumption in most cases is unrealistic because it
implies that the score distribution is independent of the ranking model. In this work,
we propose to approximate the score distribution leveraging noise injection; that is,
[ f (x1), f (x2), . . . , f (xm)] is treated as an approximation of the score distribution for
each example, which is then transformed to the rank distribution.

5.1.1. The Process to Generate Rank Distribution. Considering the query–document struc-
ture in the ranking data, the rank distribution is derived at two levels: the query-level
rank distribution p(r|q) and the document-level rank distribution p(r|d).

Suppose there are n documents related to a query. To generate the query-level rank
distribution, we randomly sample a score from the score distribution of each docu-
ment to generate a score vector [ f (d1), f (d2), . . . , f (dn)]. We then sort the documents
according to the score vector to generate a ranked list for the query. By perform-
ing the previous process M times, we get an approximation of the query-level rank
distribution:

p(r|q) = #r
M

, r ← sort f (di )∼[ f (d1
i ),..., f (dm

i )],i=1,2,...,n[ f (d1), . . . , f (dn)]. (22)

Figure 3 shows the process to generate the query-level rank distribution (top panel).
Given a query–document pair, to generate its document-level rank distribution, the

predicted ranking scores of other documents related to the given query are fixed to be
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Fig. 4. The score distributions of the three example documents. doc1 may be close to a decision boundary
because it is assigned two predicted scores after a small perturbation. Similarly, doc2 may be far away from
any decision boundary, and doc3 may be close to the intersection of multiple decision boundaries.

the predicted scores without noise perturbation. We then randomly sample the score
distribution of the given document to generate a score vector [ f (d1), f (d2), . . . , f (dn)]
and sort it to produce a ranked list for the document. Again, the sampling and sorting
process is performed M times to generate an approximation of the document-level rank
distribution:

p(r|d) = #r
M

, r ← sort f (d)∼[ f (d1),..., f (dm)],d∈q[ f (d1), . . . , f (dn)]. (23)

The bottom panel of Figure 3 presents the process of generating the rank distribution
of Doc1.

5.1.2. An Illustrative Example. Figure 4 shows the score distributions of three example
documents. After noise injection, the data example doc1 is assigned two predicted
ranking scores, with a probability of 0.3 and 0.7, respectively. This implies that doc1
may be close to a decision boundary and hence a small perturbation leads its copies to
cross the boundary. Similarly, the noise perturbation of doc3 results in four predicted
ranking scores, suggesting that doc3 may be close to the intersection of multiple decision
boundaries. On the contrary, doc2 may be far away from any decision boundary because
its ranking scores are very consistent under perturbation.

Suppose a query q only matches the previous three documents d1, d2, and d3. The
ranked list for the query q is either r1 = [d3, d2, d1] or r2 = [d3, d1, d2]. We repeat the
sampling and sorting process to generate its query-level rank distribution. In this
particular example, the probabilities of the two ranked lists could be approximated
with 0.3 and 0.7, respectively, that is, p(r1|q) = 0.3 and p(r2|q) = 0.7.

Assume the predicted scores for d1, d2, and d3 without perturbation are 0.6, 0.8, and
1.2, respectively. Through repeated sampling and sorting, the ranked list of d1 is either
r1 = [d3, d2, d1] or r2 = [d3, d1, d2] with a probability of 0.3 and 0.7, respectively, and thus
we have p(r1|d1) = 0.3 and p(r2|d1) = 0.7. For d2 and d3, the ranked list will always be
r = [d3, d2, d1], that is, p(r|d2) = 1 and p(r|d3) = 1.

5.2. Ranking-Based Sensitivity Sampling

As discussed before, if an example is close to the decision boundary, noise injection is
more likely to vary the predicted ranking score. However, change in ranking score does
not necessarily lead to variation in the final ranking. In the example shown in Figure 4,
doc3 maintains a stable ranking despite a relatively large variation in its predicted
scores. Because we are mainly interested in the ranking of the examples rather than
the actual ranking scores, we compute the sensitivity in terms of ranking rather than
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ALGORITHM 1: RSS at Query Level
Input: the small labeled training set D, the unlabeled pool data set U , the ranking function f (.)

trained with D.
Output: The query q∗ having the highest sensitivity.
Inject noise ε drawn from an N (0, σ 2I) Normal to each unlabeled example via Equation (7);
for each q in U do

Generate query-level rank distributions via Equation (22);
for each r ∈ R do

Calculate the gain value via Equation (24);
Calculate the variation in terms of ranking via Equation (25);

end
Calculate the sensitivity via Equation (26);

end

the predicted ranking scores. The details of the RSS algorithms at both the query level
and the document level are provided in the following section.

5.2.1. RSS at Query Level. The main idea of the query-level active learning is described
as follows. Given the query-level rank distribution, if the ranked list of the query is
stable after noise perturbation, it suggests that the current ranking model is insensitive
about the query. Otherwise, the query is sensitive under the model, and we treat it as
the informative one.

Inspired by the DCG function [Jarvelin and Kekalainen 2000], we define the gain
function g of the ranked list as

g(r) =
n∑

i=1

(
2s(ri ) − 1

)
/log2(1 + ri), (24)

where s(ri) is the predicted ranking score of the document without noise perturbation
at rank ri in the ranked list, and n is the number of documents related to the list. We
then represent the variation of the ranked list associated with a query due to noise
injection as the DCG-like gain variation:

Varε(q) = g(r|q + ε) − g(r|q). (25)

It is easy to see that variation in the DCG-like gain implicitly emphasizes sensitivity at
the top of ranking. More specifically, if a query is ranked differently for its top-ranked
documents, the variation in the gain value will be large. Otherwise, it will result in a
relatively small variation.

We calculate the gain value for each possible ranked list of the query q and compute
the sensitivity as the expected variation in the gain values. The query selection criteria
can be expressed as

q∗
RSS = arg max

q∈U

∑
r∈R

p(r|q)||g(r|q + ε) − g(r|q)||2, (26)

where R denotes all possible ranked lists, and q∗
RSS is the selected query. The pseudo-

code for query sampling is shown in Algorithm 1.
In active learning settings, a potentially important issue of the interactive learning

process is the stopping criterion, that is, deciding when to stop learning, which is still
an open question and less researched [Zhu et al. 2010a]. Very often, for many practical
applications, the active learning process is stopped when a given performance threshold
is reached or a certain labeling budget is exhausted. In this study, we simply stop the
sampling process with a predefined number of iterations, which is a commonly adopted
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ALGORITHM 2: RSS at Document Level
Input: the small labeled training set D, the unlabeled pool dataset U , the ranking function f (.)

trained with D.
Output: The document d∗ having the highest sensitivity.
Inject noise ε drawn from an N (0, σ 2I) Normal to each unlabeled example via Equation (7);
for each d in U do

Generate document-level rank distributions via Equation (23);
for each r ∈ R do

Calculate the gain value via Equation (24);
Calculate the variation in terms of ranking via Equation (27);

end
Calculate the sensitivity via Equation (28);

end

convention. In principle, defining an appropriate stopping criterion for active learning
is to make a tradeoff between the data annotation cost and the model quality, and we
consider it as our future work.

5.2.2. RSS at Document Level. The main motivation behind the document-level active
learning is described as follows. The query-level sampling chooses all documents asso-
ciated with the selected query. However, a sensitive query may still contain documents
about which the ranking model is insensitive, for example, doc2 and doc3 shown in
Figure 4. Given the document-level rank distribution, we aim to select only documents
about which the ranking model is sensitive as the informative examples, for example,
doc1 in Figure 4.

Similar to the query selection, the variation of the ranked list related to a document
due to noise perturbation is represented as the gain variation:

Varε(d) = g(r|d + ε) − g(r|d). (27)

We then use the expected variation in the gain values over each possible ranked list
to measure the sensitivity of the document, and the document selection criteria can be
formulated as

d∗
RSS = arg max

d∈U

∑
r∈R

p(r|d)||g(r|d + ε) − g(r|d)||2, (28)

where d∗
RSS is the selected document. The pseudo-code for document sampling is given

in Algorithm 2.

5.2.3. RSS at Two Stage. Both the query-level active learning and the document-level
active learning have their own disadvantages. The query-level sampling selects all doc-
uments associated with a query. It may include some noninformative documents since
there are usually a large number of documents related to a selected query, especially
in the web search ranking applications. Because the quality of a ranking model is de-
termined mainly by the top-ranked documents, most of them are noninformative. The
document-level sampling ignores the query–document structure and selects documents
independently. This sampling strategy simply ignores the query–document structure
and the data dependency relationship, and hence the result may not be optimal.

To address the problem, Long et al. [2010] proposed a two-stage active learning
framework, which first selects the most informative queries at the query level and
then selects the most informative documents related to the selected queries. In this
study, we follow this two-stage active learning strategy in designing our proposed RSS
algorithm.
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Fig. 5. A two-layer decision tree model, together with the corresponding partition of the two-dimensional
space. The examples ABCDE are located in different decision regions.

Fig. 6. The results after adding Gaussian noise on different features.

6. EXPERIMENTS

In this section, we first use a synthesized example to illustrate the idea and process of
noise injection. Then, we present extensive empirical studies by applying the proposed
ranking-based sensitivity sampling algorithm to ranking tasks.

6.1. Synthesized Example for Noise Injection

The first experiment is performed on a set of synthetic data in order to illustrate the
general idea of noise injection for the decision-tree-based model and gain insight into
the proposed active learning method. We build a two-layer decision tree model with
two features and artificially generate five two-dimensional unlabeled data points (A =
[1.8 4.5], B = [4 4], C = [1 1.5], D = [2.2 2.1], and E = [4 1.8]) located in different
decision regions (as shown in Figure 5).

First, we conduct the experiments of adding noise to different features, that is, root
feature versus leaf feature. Figure 6(a) presents the results after only adding noise
on the root feature f1, which are straightforward to understand. However, for the
example E that is close to the decision boundary constructed with the leaf feature f2,
its predicted score definitely remains consistent due to the fact that it is far away from
the root decision boundary. Thus, we are not able to identify the close-to-boundary
example E in this case. Figure 6(b) shows the results of only adding noise to the
leaf feature f2, and similarly the close-to-boundary example A cannot be identified

ACM Transactions on the Web, Vol. 9, No. 1, Article 3, Publication date: January 2015.



3:16 W. Cai et al.

Fig. 7. The results after adding Gaussian noise with different standard deviations.

Fig. 8. The results after adding Gaussian noise with a different number of noisy copies.

as well. In contrast, Figure 6(c) shows the results of adding the noise drawn from
a two-dimensional N (0, σ 2I) Normal, so that the noisy copies are generated around
the original examples. Therefore, each of the close-to-boundary examples can be easily
identified.

In addition, we experiment with different parameters of the Gaussian noise to better
understand the noise injection process. There are several important parameters in
the Gaussian noise: the mean μ, the covariance matrix � = σ 2I, and the number of
noisy copies m. Clearly, the mean vector μ is set to be 0 because we aim at generating
noisy copies around the original examples. Figures 7(a), 7(b), and 7(c) plot the results
with different standard deviations σ (σ = 0.05, σ = 0.1, σ = 0.2), respectively. It
is observed that the number of samples crossing the boundary after noise injection
generally increases with the increasing value of the standard deviation σ . The result
definitely matches the intuition. If an example is very close to the decision boundary, a
small perturbation will make it cross the boundary. Otherwise, a larger perturbation
is required.

Fixing the standard deviation as σ = 0.2, we further experiment with different
values of m. Figure 8(a) presents the results after adding Gaussian noise with a small
value of m (m = 3), and we see that there are no examples that cross the decision
boundary after perturbation. This is because the noise may be occasionally added on
the inverse direction to the boundary. When the value of m increases, the close-to-
boundary examples are more likely to cross the boundary as shown in Figures 8(b)
and 8(c).
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Table I. The Statistics of the Two Learning-to-Rank Datasets

Dataset AL Dataset # Queries # Documents # Features

LETOR 4.0
base set 60 2,000

46pool set 1,940 66,383
test set 297 10,262

WEB-SEARCH
base set 200 4,102

36pool set 3,000 60,609
test set 564 11,363

6.2. Real Ranking Datasets

We use two learning-to-rank datasets to validate our proposed active learning algo-
rithms. The first one is the LETOR 4.0 dataset,2 a benchmark dataset on learning to
rank. Each query–document pair is represented by 46 features, including both the low-
level features, such as term frequency, inverse document frequency, and their combina-
tions, and the high-level features, such as BM25 and PageRank. The query–document
pairs are labeled with a three-level relevance judgment: {Bad, Fair, Good}. The second
dataset is the web search dataset from a commercial search engine (denoted as WEB-
SEARCH hereafter), and each query–document pair is represented with 36 features.
The relevance is judged with a five-level relevance scheme: {Bad, Fair, Good, Excellent,
Perfect}.

Both of the two datasets are randomly divided into three disjoint parts at the query
level: base training set, pool set, and test set. We use the base training set as the
small labeled dataset to train the initial base ranking models. The pool set is used as a
large-size unlabeled dataset to select the most informative examples. The test set T is
used to evaluate different active learning strategies. The statistics of the two datasets
are listed in Table I. In practice, the initial base training set is often collected by depth-
k retrieval with randomly selected queries according to the underlying distribution.
Similar to LETOR [Liu et al. 2007], we normalize the features from the WEB-SEARCH
dataset to the same scale at the query level with the following function:

f Norm
(i, j) = f(i, j) − mini∈n{ f(i, j)}

maxi∈n{ f(i, j)} − mini∈n{ f(i, j)}
, (29)

where n denotes the number of documents w.r.t. a certain query, and f(i, j) represents
the jth feature from the ith document.

6.3. Experimental Settings

For the base ranker, we use the GBDT model, a classical pointwise ranking approach
that is widely used in practice by commercial search engines such as Yahoo, to train
our ranking models.

We first experiment on noise injection to determine the optimal parameters for Gaus-
sian noise. Then, we compare the proposed RSS algorithms with several other active
learning algorithms at different levels to validate the effectiveness of our methods. The
algorithms select the top k informative examples. In this study, the active learning
process iterates 10 rounds, which is a commonly adopted convention. In each round
of active selection, 50 queries are selected at the query level and 500 documents are
selected at the document level, respectively. For the two-stage active learning, we em-
pirically fix the number of documents selected for each query to be 10 based on the
results from Yilmaz and Robertson [2009].

2http://research.microsoft.com/en-us/um/beijing/projects/letor/.
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Fig. 9. The percentage of documents that cross the decision boundary after perturbation, where σ -i(i =
1, 2, 3, 4) denotes the standard deviation for noise injection.

6.4. Evaluation Metrics

The performance of the new ranking function is evaluated on the separate test set. We
use two popular IR metrics, DCG and Mean Average Precision (MAP), to measure the
performance of each active learning method.

DCG is defined with respect to multilevel relevance scores, and DCG at rank n for a
given query is computed as

DCG@n =
n∑

i=1

2l(ri ) − 1
log2(1 + ri)

, (30)

where l(ri) is the relevance score of the document associated with the query q at the
rank ri.

MAP is defined to deal with binary-level relevance judgement, which is obtained by
averaging the AP values for all queries:

MAP = 1
|Q|

∑
q∈Q

∑N
n=1 P@n ∗ rel(n)

#{relevant docs} , (31)

where P@n represents precision at position n, and rel(·) is a binary function on the
relevance of the rank-n document. Because the datasets used in our experiments are
labeled with multilevel judgment, we treat {Bad, Fair} as {irrelevant} and the other
relevance levels as {relevant}. Each experiment is repeated 10 runs and we report the
average DCG at the rank 10 (DCG@10) and MAP.

6.5. Noise Injection

In this subsection, we experiment with noise injection on ranking datasets to em-
pirically determine the optimal parameters for Gaussian noise. In this study, we set
μ = 0 and � = σ 2I (as shown in Equation (8)) and experiment with different values of
σ and m.

First, we simply fix the number of generated noisy copies m to be 20 and experiment
with four values of σ : σ = 0.000001, σ = 0.00001, σ = 0.0001, σ = 0.001, denoted as σ -1,
σ -2, σ -3, and σ -4, respectively. Note that, in this study, the σ -1 is the smallest value
available since we have rounded the features to six decimal places during the nor-
malization process. Figure 9 shows the percentage of examples (i.e., documents) that
cross the decision boundary after noise injection with different standard deviations. We
observe that the percentage increases monotonically with the increasing value of the
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Table II. Experiments on the LETOR 4.0 Dataset with Different Standard Deviations at the Document Level

Active Learning Round
Std-σ 1 2 3 4 5 6 7 8 9 10 Metrics
σ -1 2.38 2.42 2.44 2.45 2.48 2.49 2.51 2.51 2.54 2.53

DCG@10
σ -2 2.37 2.40 2.42 2.43 2.45 2.45 2.48 2.50 2.52 2.52
σ -3 2.36 2.38 2.39 2.42 2.47 2.48 2.50 2.51 2.53 2.52
σ -4 2.32 2.35 2.36 2.42 2.44 2.45 2.47 2.49 2.49 2.51
σ -1 0.358 0.365 0.370 0.374 0.377 0.380 0.384 0.384 0.386 0.386

MAP
σ -2 0.356 0.364 0.367 0.371 0.373 0.374 0.380 0.380 0.383 0.385
σ -3 0.354 0.359 0.362 0.364 0.369 0.371 0.374 0.375 0.378 0.379
σ -4 0.352 0.356 0.360 0.362 0.365 0.370 0.375 0.377 0.381 0.384

Table III. Experiments on the WEB-SEARCH Dataset with Different Standard Deviations at the Document Level

Active Learning Round
Std-σ 1 2 3 4 5 6 7 8 9 10 Metrics
σ -1 13.79 13.85 13.90 13.93 13.94 13.96 14.00 14.03 14.04 14.05

DCG@10
σ -2 13.79 13.84 13.87 13.90 13.92 13.94 13.98 13.99 13.99 13.99
σ -3 13.78 13.80 13.82 13.85 13.87 13.90 13.90 13.95 13.96 13.95
σ -4 13.78 13.84 13.90 13.92 13.93 13.93 13.97 13.99 14.01 14.02
σ -1 0.658 0.663 0.666 0.668 0.668 0.669 0.669 0.670 0.672 0.672

MAP
σ -2 0.656 0.661 0.662 0.663 0.665 0.665 0.666 0.668 0.669 0.669
σ -3 0.653 0.654 0.657 0.659 0.660 0.661 0.662 0.665 0.665 0.666
σ -4 0.654 0.660 0.663 0.663 0.664 0.665 0.667 0.667 0.667 0.669

standard deviation σ . The results agree with the explanation discussed previously. If an
example is very close to the decision boundary, a small noise perturbation will make it
cross the decision boundary. Otherwise, a larger distortion is needed. Moreover, we ex-
periment on the proposed RSS algorithms with different standard deviations. Table II
and Table III show the experimental results at the document level on the LETOR
4.0data set and the WEB-SEARCH dataset, respectively. For each experiment, the val-
ues of best performance are underlined. We observe that σ -1 consistently outperforms
the other three σ values for both datasets. A possible explanation is that using a small
σ noise can select the examples that are very close to the decision boundary. We further
see that the performance with σ -4 is better than σ -2 and σ -3 in some evaluation points.
This phenomenon may be explained as follows. As shown in Figure 9, it is observed
that nearly 100% of the examples cross the boundaries after injecting the noise with
σ -4, and thus the examples chosen with σ -4 are more likely to capture the data distri-
bution, resulting in a relatively good performance. Similar results are obtained when
experimenting on the query level and two stage. Based on the experimental results, we
empirically set σ to be 0.000001 in the remainder of our experiments.

Then, we fix the standard deviation σ to be 0.000001 and experiment with four
different values of m: m = 10, m = 20, m = 50, m = 100. Figure 10 presents the
empirical results at the document level on the LETOR 4.0 dataset and the WEB-
SEARCH dataset, respectively. As shown in the figure, the RSS algorithm with m = 10
certainly performs the worst, which may be attributed to the reason we discussed in
the previous section. Moreover, the performance of RSS with the other three values
of m are comparable. Similar results can be obtained at other sampling levels. As a
consequence, we empirically set m = 20 in the following.

The process to determine the optimal parameters is similar to previous studies [Zhu
et al. 2010b]. In real-world applications in which we have an amount of initial labeled
set, the optimal parameters could be similarly determined with this procedure, that
is, experimenting with the parameter within a certain range by randomly splitting the
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Fig. 10. Experiments on the LETOR and WEB-SEARCH datasets with a different number of generated
noisy copies m at the document level.

labeled set as training-pool-test sets and choosing the value having the best averaged
performance. More complicated methods such as cross-validation can also be used, with
increasing computation and complication.

6.6. Comparison Results and Discussion

In this subsection, we compare our proposed RSS algorithms with several other active
learning methods to test the effectiveness in data selection at different levels. We
denote the proposed query level, the document level, and the twostage RSS algorithms
as RSS-Q, RSS-D, and RSS-QD, respectively.

6.6.1. Document-Level Active Learning. We first perform the active learning experiments
at the document level and interpret the results. The document-level sampling is sim-
ilar to the traditional active learning framework, which ignores the query–document
structure in the data and chooses the examples independently. We compare our RSS-D
algorithm against the following four competitors:

(1) SS: The proposed score-based sensitivity sampling algorithm, which individually
chooses the documents with the highest sensitivity in predicted scores.

(2) QBC-D: The classical QBC for regression method is to choose the data points having
the highest variance among the members’ predictions (note that pointwise is re-
gression in fact). In this study, the committee is constructed on bootstrap examples
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Fig. 11. Comparison results of RSS-D, ELO-DCG-D, SS, QBC-D, and RAND-D for the document-level active
learning. Two datasets are used for the comparison: LETOR 4.0 and WEB-SEARCH. The evaluation metrics
used are DCG@10 and MAP.

with Bagging type, which refers to the Query by Bagging [Abe and Mamitsuka
1998].

(3) ELO-DCG-D [Long et al. 2010]: The document-level ELO-DCG algorithm aims to
select the documents with the largest expected DCG loss, representing the state-
of-the-art method.

(4) RAND-D: The random document selection, representing a baseline.

The experimental results of the five document-level active learning algorithms on the
LETOR 4.0 dataset are plotted in Figures 11(a) and 11(b). As shown in the figures, we
observe that both RSS-D and ELO-DCG-D perform better than the other three methods
in most cases, demonstrating that active learning-for-ranking algorithms (i.e., RSS-D
and ELO-DCG-D) are more effective in selecting the most informative examples in
the ranking task than score-based sensitivity sampling (i.e., SS), regression-oriented
QBC-D, and the random document selection. Furthermore, the RSS-D consistently out-
performs ELO-DCG-D during the entire active learning process. For the comparison
results between SS and QBC-D, we observe that SS works slightly better than QBC-D
in most of the cases. Similar results are obtained when comparing the five algorithms
on the WEB-SEARCH dataset (Figures 11(c) and 11(d)). Here, we are particularly in-
terested in the performance gap between RSS-D and SS since both algorithms aim to
select the examples with the highest sensitivity. We observe that RSS-D significantly
outperforms SS on both datasets. A possible explanation of the results is as follows.
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Fig. 12. Comparison results of RSS-Q, ELO-DCG-Q, QBC-Q, and RAND-Q for the query-level active learn-
ing. Two datasets are used for the comparison: LETOR 4.0 and WEB-SEARCH. The evaluation metrics used
are DCG@10 and MAP.

While the SS simply selects the documents with the highest sensitivity in predicted
ranking scores, the RSS-D chooses the documents with the highest sensitivity in rank-
ing, which are more likely to contribute positively to the ranking model.

6.6.2. Query-Level Active Learning. Query-level sampling chooses all documents related
to the selected query. In this subsection, we compare the proposed RSS-Q algorithm
with the other three query-level data selection algorithms.

(1) ELO-DCG-Q [Long et al. 2010]: The query-level ELO-DCG algorithm that aims at
selecting the queries with the largest expected DCG loss.

(2) QBC-Q [Cai et al. 2011]: The QBC algorithm for active query selection that chooses
the queries that have the largest inconsistency of rankings predicted by committee
members.

(3) RAND-Q: The baseline random query selection.

Figure 12 presents the results of the four query-level active learning algorithms on
the LETOR 4.0 dataset and the WEB-SEARCH dataset. We observe that both RSS-Q
and ELO-DCG-Q perform better than QBC-Q and RAND-Q in terms of DCG@10 and
MAP. A possible reason for these results may be as follows. The ELO-DCG-Q selects
the queries with the largest expected DCG loss that is directly related to the objective
function DCG@10 used to evaluate the ranking function, and the RSS-Q chooses the
most sensitive queries to improve the ranking model performance effectively. For the
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Fig. 13. The number of documents chosen by RSS-Q, ELO-DCG-Q, QBC-Q, and RAND-Q after active
sampling for the LETOR 4.0 dataset and the WEB-SEARCH dataset.

comparisons between RSS-Q and ELO-DCG-Q, we see that RSS-Q performs as well
as ELO-DCG-Q measured by DCG@10 during the sampling process. In terms of MAP,
RSS-Q consistently outperforms ELO-DCG-Q. A possible explanation is that the ex-
pected loss optimized by ELO-DCG-Q is based on DCG, which is not directly correlated
with MAP. Moreover, we observe that ELO-DCG-Q performs even worse than the weak
baseline RAND-Q on the WEB-SEARCH dataset measured by MAP when the size of
the training set is small. This is likely because the ELO algorithm uses the function
ensemble to calculate the expected loss. When the base training data is restricted (e.g.,
at the early stage of the active learning process), the ELO algorithm may have very
low prediction accuracy in expected loss and result in inferior performance. With the
size of training set increasing, ELO starts to perform well.

The query-level active learning algorithms select all documents associated with the
selected queries. Figure 13 shows the comparison of the number of documents selected
by these four query-level algorithms after active sampling. We observe that all active
learning algorithms tend to select queries with more documents than passive learning.
A possible explanation is that active learning aims to select the most informative
samples and queries with more documents are more likely to contain more information.
Here, we focus on the comparison between RSS-Q and ELO-DCG-Q since their ranking
performances are comparable in terms of DCG@10, and ELO-DCG-Q is observed to
select more documents than RSS-Q (e.g., more than 3,000 documents on the LETOR
4.0 dataset). In terms of MAP, RSS-Q performs even better than ELO-DCG-Q while
RSS-Q selects less documents than ELO-DCG-Q. Therefore, RSS-Q can reduce more
labeling cost than ELO-DCG-Q in practice.

6.6.3. Two-Stage Active Learning. The two-stage active learning framework first selects
the most informative queries at the query level and then selects the most informative
documents related to the selected queries at the document level. In this subsection, we
compare our proposed two-stage RSS active learning algorithm (denoted as RSS-QD)
against the following three algorithms. As mentioned before, we simply fix the number
of documents selected for each query to be 10 for all algorithms.

(1) ELO-DCG-QD [Long et al. 2010]: The two-stage ELO-DCG algorithm first selects
the queries at the query level and then selects the documents related to the selected
queries.
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Fig. 14. Comparison results of RSS-QD, ELO-DCG-QD, Depth-k, and RAND-QD for the two-stage active
learning. Two datasets are used for the comparison: LETOR 4.0 and WEB-SEARCH. The evaluation metrics
used are DCG@10 and MAP.

(2) Depth-k [Aslam et al. 2009]: The Depth-k retrieval approach, which first randomly
selects queries and then selects the top k relevant documents for each query, is
widely used in practical search engines. In our experimental setting, this approach
corresponds to random query selection followed by selecting k documents with the
highest predicted relevance scores within each selected query.

(3) RAND-QD: The two stage random selection can be viewed as a variant of Depth-k,
that is, random query selection followed by random document selection for each
query.

Figure 14 presents the comparison results of the four two-stage sampling algorithms
on the LETOR 4.0 dataset and the WEB-SEARCH dataset. We observe that among
the four sampling methods, RSS-QD achieves the highest DCG@10 and MAP scores,
and ELO-DCG-QD performs the second best, demonstrating that both the RSS-QD and
ELO-DCG-QD could select more informative queries and more informative documents
than Depth-k and RAND-QD. Moreover, Depth-k performs better than RAND-QD in
general. This is likely because Depth-k tends to select more relevant examples than
RAND-QD, and those examples are more helpful in improving the ranking performance
than irrelevant examples.

6.6.4. Significance Test. To better test the effectiveness of the proposed algorithms, we
conduct the significance test on the comparisons. Table IV reports the results of the
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Table IV. Win% of RSS Versus the Other Strategies in One-Tailed Paired T-Test at 95% Significance Level (p <

0.05)

Paired t-Test
LETOR 4.0 WEB-SEARCH

Sampling LevelDCG@10 MAP DCG@10 MAP
RSS-D vs. ELO-DCG-D 70% 70% 90% 60%

Document level
RSS-D vs. SS 80% 100% 100% 90%
RSS-D vs. QBC-D 100% 100% 100% 100%
RSS-D vs. RAND-D 100% 100% 100% 100%
RSS-Q vs. ELO-DCG-Q 0% 10% 10% 30%

Query levelRSS-Q vs. QBC-Q 20% 50% 40% 30%
RSS-Q vs. RAND-Q 70% 90% 70% 60%
RSS-QD vs. ELO-DCG-QD 10% 30% 70% 40%

Two stageRSS-QD vs. Depth-k 40% 60% 90% 90%
RSS-QD vs. RAND-QD 80% 80% 100% 90%

one-tailed paired t-test of RSS versus the competitors at different sampling levels
on both of the two datasets. We compare the DCG@10 and MAP over 10 runs at
each evaluation point and present the percentage of evaluation points at which RSS
statistically outperforms the competitors, denoted as Win%. The results show that RSS
performs significantly better than the compared algorithms in most cases.

7. EXTENSIONS

The proposed noise-injection-based active learning strategy is flexible and can be gener-
alized to a wide range of learners. This section discusses a number of possible extensions
to show its applicability to other base learners.

In the following, we first generalize the noise injection technique for sample selection
to RankSVM, a classical pairwise ranking approach. Then, we apply it to classification
tasks and accordingly derive a new active learning algorithm for classification tree.

7.1. Noise Injection for RankSVM

Following previous work on RankSVM-oriented active learning [Yu 2005], we are in-
terested in document retrieval here, that is, document-level active learning.

Given the training set D = {(xi, yi)}n
i=1, where xi is a data point (document) and yi is

an integer indicating the relevance of xi to its related query, the goal of RankSVM is to
learn a ranking function f (x) = 〈w, x〉 from partial orders that satisfies

xi � xj ⇔ f (xi) > f (xj)
⇔ 〈w, xi〉 > 〈w, xj〉
⇔ 〈w, xi − xj〉 > 0, (32)

where xi � xj denotes that xi is ranked higher than xj . Constructing the RankSVM
model is to solve the following Quadratic Programming (QP) problem:

min
w

1
2

||w||2 + C
∑

ξi j

s.t. 〈w, xi − xj〉 ≥ 1 − ξi j,

ξi j ≥ 0, ∀i, j, (33)

where ξi j is a slack variable.
Here, we generalize the noise injection technique to RankSVM, which is employed

as the base ranking function. Considering that the decision boundary is constructed
with the pairwise orderings that are generated from D, we accordingly add the noise
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on the data pairs, that is, (xi, xj),∀i, j, which can be formulated as

(xi − xj)k = (xi − xj) + εk, k = 1, 2, . . . m. (34)

Because the pairwise approach is a classification, the document pair crossing from one
decision region to another will receive a different class label. In this study, we use a
simple and natural function to define the sensitivity w.r.t. a given pair:

S(xi, xj) =
m∑

k=1

1{sign〈w, (xi − xj)k〉 �= sign〈w, xi − xj〉}, (35)

where 1(.) is the indicator function.
The intuitive explanation for Equation (35) is similar to earlier. If the document

pair is close to the decision boundary, its related noisy copies are more likely to cross
the boundary, resulting in a large value of sensitivity. On the contrary, the sensitivity
score will be small or even 0 for the example pair staying far away from the decision
boundary. Thus, the pair-based sensitivity sampling (PSS), which aims to choose the
close-to-boundary data pair, can be expressed as

(xi, xj)∗PSS = arg max
xi ,xj∈U

m∑
k=1

1{sign〈w, (xi − xj)k〉 �= sign〈w, xi − xj〉}, (36)

where (xi, xj)∗PSS stands for the selected data pair.

Discussion. Here we discuss several related issues w.r.t. the proposed PSS
algorithm.

(1) For SVM models, the distance between the data point x and the decision boundary
〈w, x〉 = 0 can be directly computed as Dist(w, x) = |〈w, x〉|/||w||. One of the most
widely used active learning algorithms for SVM is called simple margin, which aims
to choose the examples that are closest to the boundary [Tong and Koller 2001].

(2) Similarly, for RankSVM, we can directly calculate the distance from the data pair
(xi, xj) to the boundary as Dist(w, xi, xj) = |〈w, xi − xj〉|/||w||. In this sense, the
noise injection technique aiming to identify the close-to-boundary data pairs could
be regarded as a variant of simple margin in the context of RankSVM.

(3) As discussed in Section 2, a classical active learning targeting on RankSVM as the
base ranking model (denoted as SEL) is to choose the document pairs with similar
predicted relevance scores [Yu 2005]:

(xi, xj)∗SEL = arg min
xi ,xj∈U

|〈w, xi〉 − 〈w, xj〉|. (37)

On the other hand, the proposed PSS algorithm can be treated as an approximation
of choosing the close-to-boundary pairs, and we formulate this as

(xi, xj)∗PSS ≈ arg min
xi ,xj∈U

|〈w, xi − xj〉|
||w|| = arg min

xi ,xj∈U
|〈w, xi − xj〉|. (38)

Putting together Equations (37) and (38), PSS can be viewed as an approximation
of SEL:

(xi, xj)∗PSS ≈ (xi, xj)∗SEL. (39)

For evaluation, the SVMrank is used for training the base ranker.3 Figure 15 presents
the learning curves with different document selection methods on the LETOR 4.0 and

3http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html.
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Fig. 15. Comparison results of PSS, SEL, and RAND at the document level with RankSVM. Two datasets
are used for the comparison: LETOR 4.0 and WEB-SEARCH. The evaluation metrics used are DCG@10 and
MAP.

WEB-SEARCH datasets. As shown in the figure, the performance of the proposed
PSS algorithm is comparable to SEL, which is specifically designed for RankSVM.
This is because PSS is actually an approximation of SEL as we discussed earlier. In
addition, PSS significantly outperforms RAND on both of the two datasets, indicating
the effectiveness of our algorithm.

For the listwise learning-to-rank approaches, applying noise-injection-based active
learning to them is more complex. First,the constructed decision boundary is compli-
cated. Take SVM-MAP for example [Yue et al. 2007]: the decision boundary is built in a
transformed space using combined features, which are mapped from query–document
pairs and their relevance judgments, making the geometric property of noise injection
incomprehensible. Another issue is that the listwise approach takes ranked lists of
documents (all possible queries) as the training instances. Hence, it has the potential
to directly apply the query-level data sampling, but the document-level sampling needs
to be thoroughly justified. To this end, we need to carefully design the noise injection
technique and leave this as our future work.

7.2. Noise Injection for Classification Tree

Compared to the regression tree model, where its predicted score is a continuous value,
the output of a classification tree is discrete. Here, we focus on the binary classification
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Fig. 16. Comparison results of CSS, QBC, and RAND for letter recognition. The evaluation metric used is
classification accuracy.

problem; that is, the class labels are represented as {0, 1}. It can be easily generalized
to multiclass problems.

Noise injection for classification tree proceeds in a similar fashion to that shown in
Equation (7). Given the noisy copies generated with Gaussian noise, the sensitivity
with respect to a given unlabeled example x is defined with the function that follows,
which is similar to Equation (35):

S(x) =
m∑

k=1

1{ f (xk) �= f (x)}, (40)

where f (.) denotes the classification tree model learned with the current training set.
As a consequence, the classification-based sensitivity sampling (CSS) can be formulated
as

x∗
CSS = arg max

x∈U

m∑
k=1

1{ f (xk) �= f (x)}, (41)

which is derived in a similar manner as shown in Equation (36).
For evaluation, we test the CSS algorithm with application to letter recognition from

the UCI benchmark dataset.4 We select two pairs of letters (M-vs.-N and U-vs.-V) that
are relatively difficult to distinguish and construct a binary-class dataset for each pair.
The classification tree is employed as the base learner, and the performance metric
is classification accuracy. Figure 16 shows the comparison results. We observe that
the CSS algorithm performs better than the other two competitors, demonstrating the
effectiveness of our method.

8. CONCLUSIONS AND FUTURE DIRECTION

In this article, we propose a novel active learning for ranking strategy called ranking-
based sensitivity sampling (RSS), which is tailored for Gradient Boosting Decision Tree
(GBDT). The strategy relies on noise injection to perturb the original data examples
and selects the examples with the largest sensitivity in the predicted scores. Moreover,
we theoretically analyze the proposed strategy by exploring the connection between the
sensitivity used for sample selection and model regularization to provide a potentially
theoretical support. Since the performance metrics of ranking are based on the resulted

4http://archive.ics.uci.edu/ml/.
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ranking list focusing on the top-ranked documents rather than the actual value of
predicted ranking scores, the RSS approach transforms the score distribution to the
rank distribution and then uses the expected variation of a DCG-like gain to measure
the sensitivity of each example. Considering the query–document structure in web
search ranking, the proposed RSS strategy is applied at both the query level and
the document level, and the two-stage algorithm is further derived. Experimental
results on both the LETOR 4.0 dataset and a real-world web search ranking dataset
have demonstrated that the proposed active learning algorithms can achieve better
performance than the state-of-the-art methods.

The proposed noise-injection-based active learning strategy is flexible, which can be
further extended to other base models. We generalize it to RankSVM and classification
tree. Empirical studies are performed on several benchmark datasets, and the results
show the effectiveness of our proposed algorithms.

The proposed algorithm performs active learning in batch mode, that is, selecting top-
k informative data examples in each sampling iteration. The correlation or similarity
among the selected examples at each batch is not considered. A possible extension of
this work is to incorporate the diversity of the selected dataset to further minimize
labeling cost.
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R. Silva, M. A. Gonçalves, and A. Veloso. 2011. Rule-based active sampling for learning to rank. In Proceedings

of European Conference on Machine Learning and Principles and Practise of Knowlege Discovery in
Databases (ECML-PKDD’11). 240–255.

M. Taylor, J. Guiver, S. Robertson, and T. Minka. 2008. SoftRank: Optimizing non-smooth rank metrics.
Proceedings of the 1st ACM International Conference on Web Search and Data Mining (WSDM’08).
77–86.

S. Tong and D. Koller. 2001. Support vector machine active learning with applications to text classification.
Journal of Machine Learning Research 2 (2001), 45–66.

G. Valentini and T. G. Dietterich. 2004. Bias-variance analysis of support vector machines for the development
of SVM-based ensemble methods. Journal of Machine Learning Research 5 (2004), 725–775.

F. Xia, T. Y. Liu, J. Wang, W. Zhang, and H. Li. 2008. Listwise approach to learning to rank: Theory and
algorithm. In Proceedings of the 25th International Conference on Machine Learning (ICML’08). 1192–
1199.

L. Yang, L. Wang, B. Geng, and X. Hua. 2009. Query sampling for ranking learning in web search. In
Proceedings of the 32nd Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR’09). 754–755.

E. Yilmaz and S. Robertson. 2009. Deep versus shallow judgments in learning to rank. In Proceedings of
the 32nd Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR’09). 662–663.

H. Yu. 2005. SVM selective sampling for ranking with application to data retrieval. In Proceedings of the 11st
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’05). 354–363.

ACM Transactions on the Web, Vol. 9, No. 1, Article 3, Publication date: January 2015.



Active Learning for Web Search Ranking via Noise Injection 3:31

Y. Yue, T. Finley, F. Radlinski, and T. Joachims. 2007. A support vector method for optimizing average
precision. In Proceedings of the 30th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR’07). 271–278.

J. Zhu, H. Wang, E. Hovy, and M. Ma. 2010a. Confidence-based stopping criteria for active learning for data
annotation. ACM Transactions on Speech and Language Processing 6, 3 (2010), Article No. 3, 1–24.

J. Zhu, H. Wang, B. Tsou, and M. Ma. 2010b. Active learning with sampling by uncertainty and density for
data annotations. IEEE Transactions on Audio, Speech and Language Processing 18, 6 (2010), 1323–
1331.

Received January 2014; revised October 2014; accepted October 2014

ACM Transactions on the Web, Vol. 9, No. 1, Article 3, Publication date: January 2015.


