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Batch Mode Active Learning for Regression
With Expected Model Change

Wenbin Cai, Student Member, IEEE, Muhan Zhang, and Ya Zhang, Member, IEEE

Abstract— While active learning (AL) has been widely studied
for classification problems, limited efforts have been done
on AL for regression. In this paper, we introduce a new
AL framework for regression, expected model change maximiza-
tion (EMCM), which aims at choosing the unlabeled data
instances that result in the maximum change of the current
model once labeled. The model change is quantified as the
difference between the current model parameters and the
updated parameters after the inclusion of the newly selected
examples. In light of the stochastic gradient descent learning
rule, we approximate the change as the gradient of the loss
function with respect to each single candidate instance. Under
the EMCM framework, we propose novel AL algorithms for
the linear and nonlinear regression models. In addition, by
simulating the behavior of the sequential AL policy when applied
for k iterations, we further extend the algorithms to batch
mode AL to simultaneously choose a set of k most informative
instances at each query time. Extensive experimental results on
both UCI and StatLib benchmark data sets have demonstrated
that the proposed algorithms are highly effective and efficient.

Index Terms— Active learning (AL), batch mode, expected
model change, linear regression, nonlinear regression.

I. INTRODUCTION

DATA collection, feature engineering, and algorithm
design are the three essential components in building

any machine learned model. However, in many learning tasks,
the importance of data collection is often under weighted.
Passive learning, which randomly selects training examples
according to a certain underlying distribution and sends them
to editors for manual annotation, is the most widely used
approach for data collection. The manual annotation process
could be both time consuming and labor consuming. Very
often, a learning task only has a limited budget, so that
one has to make a tradeoff between data quality and model
performance. On the other hand, not all examples selected by
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passive learning positively contribute to the model training.
Given a fixed budget, active learning (AL) selectively chooses
the most helpful instances, maximizing the performance of
the model learned. A typical AL process iterates through the
following three steps: 1) build a base model from a given small
initial training seed; 2) choose the informative examples with a
predefined sampling function and query their labels; and 3) add
those newly labeled examples to the training set and update
the model. This active sampling process is usually iterated
until a given performance threshold is reached. In recent years,
AL has been applied in many machine learning applica-
tions [6], [21], [30].

So far, AL has been widely studied for classification.
Uncertainty sampling, a widely adopted AL strategy, chooses
the example whose label the current classifier is most uncertain
about [11], [20], [25]. Another classical AL framework is
query-by-committee (QBC), which constructs a committee of
member models and queries the unlabeled example having the
largest disagreement among the members [23]. Recently, the
capability of examples to change the model has been investi-
gated for AL. In the literature, limited efforts have been done
on AL for regression. Consequently, a general AL framework
concentrating on regression is of great need. In this paper,
we attempt to employ the model change-based strategy for
regression. The major challenge lies in the measurement of
model change, especially for nonparametric models, such as
tree-based models.

Most existing AL methods have focused on selecting
a single most informative example in each data sampling
iteration. This AL framework is usually regarded as sequential
AL (SAL). But, this SAL scheme is not applicable in real
applications due to the following two reasons: 1) the model
has to retrain after each new example is queried, resulting in
an extremely high time cost and 2) SAL could make wasteful
use of the practical resource if a parallel labeling system is
available (we often have multiple editors in practice).

To address those limitations, batch mode AL (BMAL),
which selects a batch of examples in each iteration, has
recently drawn a great deal of attention among machine
learning researchers. One naive approach toward BMAL is to
simply apply an existing SAL algorithm k times to generate a
batch, e.g., selecting the k minimum margin examples when
employing the margin-based strategy. The main problem with
such naive BMAL approach is that the similarity or correlation
among selected examples is totally ignored. To reduce the
data redundancy among a selected batch, several BMAL algo-
rithms are recently proposed for classification, mainly based
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on optimizing certain information measures [2]–[5], [7]–[9].
However, the information measures adopted (e.g., fisher infor-
mation matrix [2]–[4], expected log likelihood [5], and mutual
information [7]) are derived for classification models. As a
result, the existing BMAL methods are not directly applicable
to regression.

In this paper, we consider the ability of the data instances
to change the current model, and accordingly propose a
novel AL framework, named expected model change max-
imization (EMCM), in the context of regression. EMCM
quantifies the change as the difference between the current
model parameters and the new model parameters learned
from enlarged training data, and chooses the data examples
that result in the greatest change. In light of the stochastic
gradient descent (SGD) rule, which repeatedly updates the
model parameters according to the negative gradient of the loss
at each training example, we use the gradient of the loss at a
candidate example to estimate its ability to change the model.

Under the EMCM framework, we first develop a novel
AL algorithm for linear regression, where the change is calcu-
lated as the norm of gradient at a single candidate example. For
nonlinear regression, gradient boosting decision tree (GBDT)
is used as the base learner in this paper. In comparison to linear
regression, GBDT has a discrete model form, which makes it
infeasible to directly measure the model change as gradient.
To address this issue, we generate super features from trees and
approximate GBDT as a linear regression model with feature
mapping. We then propose an AL algorithm for GBDT-based
nonlinear regression.

Besides, motivated by recent work of matching the behavior
of an SAL method [9], we further extend the proposed EMCM
algorithms to BMAL, and the key idea is that BMAL could
capture the per-example accuracy improvement of SAL with
fewer iterations via batch selection. Hence, we extend sequen-
tial EMCM algorithms to batch mode EMCM (B-EMCM)
algorithms by approximating the SAL behavior without model
retraining to simultaneously choose a batch of examples,
i.e., selecting a batch of k examples that best matches the
outputs of the sequential EMCM counterparts when performed
for k iterations.

We validate our AL algorithms on various benchmark data
sets from UCI and StatLib. Substantial experimental results
have demonstrated that the proposed AL algorithms are highly
effective and efficient.

The proposed EMCM is generic, and is naturally suitable to
the SGD-based models. We also discuss its potential usability
for non-SGD learning models [we extend EMCM to Gaussian
process (GP) regression in this paper] to show its applicability
in a wide spectrum of applications.

The main contributions of this paper can be summarized as
follows.

1) We introduce a novel AL framework for regression,
called EMCM, which queries the examples, maximizing
the model change once added to the training data.

2) Under this framework, we design new AL algorithms
for both linear and nonlinear regression models, which
are effective in selecting useful instances for model
training.

3) By imitating the behavior of the sequential counterparts,
we further extend sequential EMCM algorithms to
B-EMCM algorithms.

The rest of this paper is structured as follows. Section II
summarizes the existing AL approaches. Section III
presents the general framework of EMCM. Our proposed
AL algorithms are presented in Section IV. Section V details
our B-EMCM algorithms. Section VI presents the experiments
and interprets the results. Possible extensions are discussed in
Section VII. Finally, we conclude this paper in Section VIII.

II. RELATED WORK

AL has gained a great deal of attentions in the machine
learning community in recent years. In this section, we
summarize several classic AL strategies. A comprehensive
AL survey can be found in [32].

A. Active Learning for Classification

So far, various types of AL strategies have been investigated
for classification tasks [16], [24].

The extensively used strategy is uncertainty sampling [11],
[20], [25], which queries the instance whose label the current
classifier is most uncertain about. This data sampling approach
is straightforward for probabilistic models using entropy-based
measurement [20]. This strategy could also be applied to non-
probabilistic models, such as support vector machines (SVMs),
and aims to choose the instance located in the margin [25].

QBC [23] is another typical AL framework, which
constructs a committee of model members and queries the
instance the members disagree the most. The widely used
function for disagreement measure is called vote entropy [27].
To effectively construct the committee, various types of
ensemble learning techniques have been employed, such as
boosting and bagging [28], [29], [31].

Another decision-theoretic AL strategy aims at minimizing
the generalization error of the model. Roy and McCallum [33]
proposed to choose the instance that results in the lowest
generalization error on the future unseen data after labeled
and incorporated into the training set. The major drawback of
this AL approach lies in its high computational complexity.
Instead of choosing the instance yielding the smallest
generalization error, Nguyen and Smeulders [36] suggested
to select the data instance that contributes the most to the
current generalization error.

Model change-based idea has been studied in classification.
Settles et al. [19] introduced a data selection algorithm, which
chooses the instance that would greatly change to the classifier,
and the change was quantified as the length of the new gradient
of the loss function with respect to model parameters.

B. Active Learning for Regression

In the literature, AL targeting on regression is still less well-
researched. We summarize the existing methods as follows.

Castro et al. [10] theoretically analyzed AL in the con-
text of regression with a certain noise ratio. Sugiyama [12]
proposed a population-based AL method, where the input
data examples can be arbitrarily generated in the space.
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Sugiyama and Nakajima [13] introduced a theoretically opti-
mal AL algorithm that attempts to directly minimize the
generalization error when employing an additive regression
model. Cohn et al. [14] presented an AL strategy with a similar
motivation, which chooses the example, minimizing the output
variance to reduce generalization error. Freund et al. [23] sug-
gested that the QBC framework could be applied to regression
cases where the outputs are continuous, which is related to the
variance-based QBC [26]. Yu and Kim [17] provided passive
sampling heuristics based on the geometric characteristics of
data. Cai et al. [18] presented a novel data sampling solution
in the context of regression, which queries the example leading
to the largest model change.

As listed before, all the regression-oriented AL techniques
are designed under the sequential mode. Due to the important
role of BMAL in practical cases, it is highly desirable to derive
BMAL methods in the context of regression.

C. Batch Mode Active Learning

In the past, there is a limited amount of work on BMAL for
classification. In general, the key idea of BMAL is to reduce
the redundancy among the selected examples in the batch, and
thus each example could provide unique information for model
updating.

Brinker [1] introduced an SVM-based batch selection
method by incorporating the diversity of data examples.
Hoi et al. [2]–[4] presented a BMAL framework, employing
the fisher information matrix to measure the overall informa-
tion for a set of examples. Guo and Schuurmans [5] proposed
a discriminative BMAL approach that formulates the batch
selection as a continuous optimization problem. In recent
years, Guo [7] introduced a novel BMAL method that selects a
set of examples, maximizing the mutual information between
labeled and unlabeled instances. Chattopadhyay et al. [8]
selected a batch of examples, which aims to minimize the dif-
ference in data distribution between the expanded training data
and the large unlabeled data after annotation. Azimi et al. [9]
proposed a novel BMAL approach with the idea of approxi-
mating the behavior of SAL methods when applied for k itera-
tions. Unlike previous BMAL strategies that require the batch
size as an input, Chakraborty et al. [38] recently proposed new
dynamic BMAL frameworks, which can adaptively determine
the batch size by integrating the batch size and selection
criteria into a single optimization formulation.

As summarized in the above, the existing BMAL algorithms
are mainly derived with classification models, e.g., SVM-based
BMAL [1], which cannot be directly generalized to regression.
In this paper, we extend our previous work [18] to BMAL by
simulating the sequential mode AL behavior to simultaneously
choose a set of examples without retraining, which is the new
contributions of this paper. Now, we present the formulations
of our AL methods targeting on regression, and then extend
them to BMAL algorithms.

III. EXPECTED MODEL CHANGE MAXIMIZATION

In this section, we present the general framework of EMCM.
After that, we give an empirical interpretation of EMCM to
motivate this idea.

A. Framework of EMCM

The objective of supervised learning can be represented as
learning a function f (.) that minimizes the generalization error
on the future test data

ε =
∫
X×Y

L[ f (x), y(x)]d P(x, y) (1)

where y(x) and f (x) stand for the true label and the predicted
label of the example x , respectively. L[ f (x), y(x)] is a given
loss function. Since the joint distribution P(x, y) is unknown,
we cannot directly solve formula (1). In practice, we are
given a training set D = {(xi , yi ), xi ∈ X , yi ∈ Y}ni=1
drawn independent identically distributed from P(x, y),
i.e., D ∼ P(x, y), and then build the model by minimizing
the empirical error on D

ε̂D =
n∑

i=1

L[ f (xi ), yi ]. (2)

This model fitting process is well known as the empirical risk
minimization principle.

Suppose that the model is parameterized by �. To search �
minimizing the empirical error, a widely used search approach
is SGD rule, which updates � iteratively according to the
negative gradient of the loss L(�) with respect to each training
example (xi , yi )

�new← �− α
∂Lxi (�)

∂�
, i = 1, 2, . . . , n (3)

where α represents the learning rate.
Now, we investigate the SGD rule in AL problems. Suppose

a candidate instance (x+, y+) is incorporated into the training
set. The empirical error on the accumulated training set
D+ = D ∪ (x+, y+) becomes

ε̂D+ =
n∑

i=1

L[ f (xi ), yi ] + L[ f (x+), y+]︸ ︷︷ ︸
:=Lx+ (�)

. (4)

Consequently, the parameter � is changed due to training set
is changed, i.e., the instance (x+, y+) is added to the training
set. According to the SGD update rule, the model change
C�(x+), i.e., the parameter change, can be approximated as
the gradient of the loss function at the candidate instance.
It can be written as

C�(x+) = �� ≈ α
∂Lx+(�)

∂�
. (5)

Since the objective of our AL strategy is to choose the
sample x∗ that leads to the maximum model change, we can
formulate the selection function as follows:

x∗ = arg max
x∈U

||C�(x)|| (6)

where U denotes the unlabeled pool set and x∗ is the selected
example.

In practical settings, we cannot directly calculate the model
change in (6), since the true label y+ of the candidate exam-
ple x+ is unknown before querying. Instead, for regression
tasks, we calculate expected model change over the prediction
distribution y+ ∈ Y , estimated by the current regression model
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to approximate the true change. We assume that the learning
rate α is identical for each candidate data sample, and our
EMCM criteria for AL are formulated as

x∗ = arg max
x∈U

∫
Y

∥∥∥∂Lx(�)

∂�

∥∥∥P(y|x)dy (7)

where P(y|x) is the conditional probability of the label y
given the instance x estimated by the current model.

B. Empirical Interpretation

In this section, we introduce an empirical interpretation for
our EMCM framework by linking the model change to the
model’s generalization performance. We believe that the model
change is a reasonable indicator for reducing the generalization
error with the following two major reasons.

1) The generalization capability can be changed if and only
if the current model is changed, As a result, it is useless
to query the instance that cannot update the current
model in AL.

2) The data points significantly changing the current model
are expected to produce a faster convergence speed to
the true model, and this is the underlying motivation
behind our EMCM framework.

We here note that a big change in the current model not always
leads to better generalization performance, since an outlier also
results in a big model change. However, in AL tasks, unlabeled
examples are repeatedly selected from a given pool set. Once
the model has been changed by an outlier, the EMCM strategy
will certainly query a good example in the next data selection
iteration that maximizes the change again, which immediately
relieves the negative effect of the outlier. In practice, because
the amount of outliers is usually very restricted in the data,
it is reasonable to believe that the proposed EMCM framework
will result in very good generalization performance with more
data instances queried.

IV. EMCM FOR REGRESSION

In this section, we first apply the proposed EMCM
framework to linear regression and accordingly derive the
algorithm. Then, the EMCM algorithm for GBDT-based non-
linear regression is presented, i.e., GBDT is used as the base
learner.

A. EMCM for Linear Regression

Linear regression consists of finding the best-fitting straight
line through the training data, which can be formulated as

f (x; θ) =
p∑

i=0

θi x(i) = θT x (8)

where x(0) = 1 is the intercept term and the values of x(i) are
the features of the example x . The linear regression model is
parameterized by the weight vector θ . Below, focusing on the
change in the parameter θ , we apply the proposed EMCM
framework to the linear regression model to derive our
AL algorithm.

Algorithm 1 EMCM for Linear Regression
Input: the small initial labeled data set D = {(xi , yi )}ni=1, the
unlabeled pool set U , the size of the ensemble Z , the linear
regression model f (x; θ) trained on D.
1: B(Z) = { f1, f2, ..., fZ }
2: for each x in U do
3: {y1, y2, ..., yZ } ← B(Z)
4: Calculate the derivative via Eq. (11).
5: Estimate the true model change via Eq. (12).
6: end for

Output: the example x∗ having the greatest model change.

Training linear regression is to minimize the squared-error
loss on the current training set D = {(xi , yi )}ni=1

ε̂D = 1

2

n∑
i=1

( f (xi )− yi )
2. (9)

Suppose a candidate point x+ with a given label y+ is added
to the training set D. The empirical error on the accumulated
training set D+ = D ∪ (x+, y+), then becomes

ε̂D+ = 1

2

n∑
i=1

( f (xi )− yi)
2 + 1

2
( f (x+)− y+)2

︸ ︷︷ ︸
:=Lx+ (θ)

. (10)

Therefore, for linear regression, the derivative of the squared-
error loss Lx+(θ) with respect to the parameters θ at x+ is
formulated as

∂Lx+(θ)

∂θ
= ( f (x+)− y+)

∂ f (x+)

∂θ

= ( f (x+)− y+)
∂θT x+

∂θ
= ( f (x+)− y+)x+. (11)

As discussed previously, because the true label y+ is unknown
in advance, we here apply bootstrap to generate an ensemble
B(Z) = { f1, f2, . . . , fZ } to estimate the prediction distri-
bution y+ ∈ {y1, y2, . . . , yZ }, and use the expected model
change to approximate the true model change. The use of
bootstrap to estimate prediction distribution has been well
investigated [35]. Thus, the final EMCM sampling function
for linear regression is expressed as

x∗ = arg max
x∈U

1

Z

Z∑
z=1

||( f (x)− yz(x))x || (12)

where f (x) is the model’s prediction, and yz(x), z = 1, . . . , Z
are calculated from the Z bootstrap models, which are learned
with the bootstrap examples. The pseudocode for EMCM for
linear regression is summarized in Algorithm 1.

B. EMCM for Nonlinear Regression

We here employ GBDT as the nonlinear regression base
model, which can be formulated as an additive model

f
(
x; {λ,�}M1

) =
M∑

m=1

λmhm(x;�m) (13)
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where M denotes the number of individual trees in GBDT and
the values of {λ,�}M1 parameterize the model. Each single tree
hm(x;�m) is a J -terminal node regression tree

h
(
x; {γ, R}J1

) =
J∑

j=1

γ j 1(x ∈ R j ) (14)

where the values of {γ }J1 are coefficients, the values
of {R}J1 are the regions partitioned by the individual tree, and
1(·) denotes the indicator function. In recent research, GBDT
has been extensively employed as the state-of-art learning
algorithm in many machine learning problems [15]. More
details about GBDT can be found in [34] and [37].

Because the parameters in decision tree-based models are
not differentiable, we are not able to directly measure the
model change using the derivative. To address this issue,
we assume that adding a single example to training data
does not influence the tree structure. The prediction rule of
a single decision tree is: x ∈ R j ⇒ h(x) = γ j . Because
the number of examples selected at each query time is quite
small in comparison of the size of existing training data, in
most cases, the region where x is located remains unchanged.
Therefore, this assumption is reasonable, especially for the
SAL cases.

Under this assumption, by employing the concept of super
features, we map each unlabeled instance to the super features
based on each individual tree

φ(x) = [h1(x), h2(x), . . . , hM (x)]T (15)

As a result, the GBDT model can be approximated as a linear
regression model

f
(
x; {λ}M1

) =
M∑

m=1

λmhm(x) = λT φ(x). (16)

Hence, we concentrate on the change in parameters {λ}M1
for AL. The derivative of the squared-error loss Lx+(λ)
with respect to the parameters λ = {λ1, λ2, . . . , λM } at the
candidate example x+ is

∂Lx+(λ)

∂λ
= ( f (x+)− y+)

∂ f (x+)

∂λ

= ( f (x+)− y+)
∂λT φ(x+)

∂λ
= ( f (x+)− y+)φ(x+). (17)

Identically, we create an ensemble with the bootstrap examples
B(Z) = { f1, f2, . . . , fZ } to calculate the prediction distri-
bution y+ ∈ {y1, y2, . . . , yZ }, and estimate the true model
change using expectation calculation. Our final EMCM sample
selection criteria for GBDT can be formulated as

x∗ = arg max
x∈U

1

Z

Z∑
z=1

||( f (x)− yz(x))φ(x)||. (18)

The corresponding pseudocode for EMCM for GBDT regres-
sion is presented in Algorithm 2.

Algorithm 2 EMCM for Nonlinear Regression
Input: the small initial labeled data set D = {(xi , yi )}ni=1, the
unlabeled pool set U , the size of the ensemble Z , the GBDT
model f (x; λ) trained on D.
1: B(Z) = { f1, f2, ..., fZ }
2: for each x in U do
3: Generate super features via Eq. (15).
4: {y1, y2, ..., yZ } ← B(Z)
5: Calculate the derivative via Eq. (17).
6: Estimate the true model change via Eq. (18).
7: end for

Output: the example x∗ having the greatest model change.

V. BATCH MODE EMCM FOR REGRESSION

To select a total of k data points, the SAL method chooses
a single example in each sampling iteration and has to be
retrained every time the new example is labeled and added to
the training set. The main drawback of SAL lies in its high
computational complexity, making it unacceptable in practical
applications.

Motivated by recent research on BMAL [9], our
goal for BMAL is to select a batch of k examples
b = {x∗1 , . . . , x∗j , . . . , x∗k } that closely matches the outputs of
the sequential counterparts without retraining. Clearly, the key
challenge is how to choose the j th example x∗j (2 ≤ j ≤ k)
after the first j − 1 ones are selected without any retraining
procedure.

In this section, we extend the sequential EMCM algorithms
to the B-EMCM algorithms by simulating the behavior
of the SAL counterpart to select a batch of k examples.
As discussed previously, the objective is to catch the per-
example performance improvement of sequential methods
with fewer sampling iterations via batch selection. The details
of our B-EMCM algorithms are provided in the following.

A. B-EMCM for Linear Regression

Under our EMCM framework, we here consider the model
change, i.e., the gradient of the error, with respect to the
j th candidate example (2 ≤ j ≤ k) after selecting the first
j − 1 ones without retraining the model.

For linear regression, if the first selected data point (x∗1 , y∗1 )
were incorporated into the training set D, the parameter θ
of the regression model is adjusted according to the gra-
dient of the loss. Given the derivative at x∗1 calculated
with (11), the new parameter θ∗ can be approximated as
follows:

θ∗ ≈ θ − α
∂Lx∗1 (θ)

∂θ
. (19)

Consequently, the new linear regression model can be written
as follows:

f∗(x) = θT∗ x ≈
(

θ − α
∂Lx∗1 (θ)

∂θ

)T

x (20)
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and the derivative of the loss at the second candidate
instance x+2 is calculated as

∂Lx+2
(
θ∗|

(
x∗1 , y∗1

))
∂θ∗
= (

f∗
(
x+2

)− y+2
)
x+2

≈
((

θ − α
∂Lx∗1 (θ)

∂θ

)T

x+2 − y+2

)
x+2

=
(

θT x+2 − y+2 − α

(
∂Lx∗1 (θ)

∂θ

)T

x+2

)
x+2

= (
f
(
x+2

)− y+2
)
x+2 − α

(
∂Lx∗1 (θ)

∂θ

)T

x+2 x+2

=
∂Lx+2

(θ)

∂θ
− α

(
∂Lx∗1 (θ)

∂θ

)T

x+2 x+2 . (21)

It formally shows that the derivative of the loss at the second
candidate example x+2 can be directly obtained with the current
model f (.) without retraining.

In general, given the derivative at previous selected exam-
ples x∗i (i = 1, 2, . . . , j − 1), the derivative with respect to
the j th candidate example x+j (2 ≤ j ≤ k) after selecting first
j − 1 ones can be approximated as

∂Lx+j
(
θ∗|b∗j−1

)
∂θ∗

≈
∂Lx+j

(θ)

∂θ
− α

j−1∑
i=1

(
∂Lx∗i

(
θ∗|b∗i−1

)
∂θ∗

)T

x+j x+j

(22)

where

b∗j−1 =
{(

x∗1 , y∗1
)
, . . . ,

(
x∗j−1, y∗j−1

)}
, j = 2, 3, . . . , k

b∗i−1 =
{(

x∗1 , y∗1
)
, . . . ,

(
x∗i−1, y∗i−1

)}
, 1 ≤ i ≤ j − 1.

Note that b∗i−1 = ∅ if i = 1. For convenient use of the notation
in the following, we define:

C
(
x+j , b∗j−1

) = α

j−1∑
i=1

(
∂Lx∗i

(
θ∗|b∗i−1

)
∂θ∗

)T

x+j x+j . (23)

Furthermore, combined with (11), it is easy to see that the
derivative at each candidate data point x+j (including the
first one) can be calculated in a unified manner. Thus, we have

∂Lx+j
(
θ∗|b∗j−1

)
∂θ∗

≈ (
f
(
x+j

)− y+j
)
x+j − C

(
x+j , b∗j−1

)
j = 1, 2, . . . , k, 1 ≤ i ≤ j − 1. (24)

The added term compared with the EMCM, i.e., the second
term of the above, C(x+j , b∗j−1), measures the relationship
between the candidate example x+j and the previous selected
examples b∗j−1, and it equals zero when j = 1.

Similarly, by taking advantage of the prediction distribution
y+ ∈ {y1, y2, . . . , yZ } estimated using the ensemble B(Z), we
approximate the true model change by averaging the estimated
model change over Z possible labels. Our B-EMCM sampling

Algorithm 3 B-EMCM for Linear Regression
Input: the small initial labeled data set D = {(xi , yi )}ni=1, the
unlabeled pool set U , the size of the ensemble Z , the size of
the batch k, the linear regression model f (x; θ) trained on D.
1: initialize: b = ∅
2: B(Z) = { f1, f2, ..., fZ }
3: while | b |< k do
4: for each x in U do
5: {y1, y2, ..., yZ } ← B(Z)
6: Calculate the derivative via Eq. (24).
7: Estimate the true model change via Eq. (25).
8: end for
9: Select x∗ having the greatest model change.

10: U ← U \ x∗, b← b ∪ x∗
11: end while
Output: the batch b = {x∗1 , x∗2 , ..., x∗k }.

function for linear regression can be formulated as

x∗j = arg max
x∈U\b∗j−1

1

Z

Z∑
z=1

∣∣∣∣( f (x)− yz(x))x − C
(
x, b∗j−1

)∣∣∣∣
j = 1, 2, . . . , k, 1 ≤ i ≤ j − 1. (25)

Note that if the learning rate α is set to be zero, i.e., the model
is not updated during AL iterations, the B-EMCM algorithm
is equivalent to the naive batch EMCM method, i.e., selecting
top-k maximum model change examples without considering
the data correlation. The pseudocode of B-EMCM for linear
regression is presented in Algorithm 3.

B. B-EMCM for Nonlinear Regression

For BMAL with the GBDT model, since we simultaneously
choose a batch of data examples in each query time, the above
assumption is that the structure of tree remains unchanged
during one single AL iteration might not be valid if the size of
batch is relatively large. One possible solution is to incorporate
the change of the tree structure, which could be measured by
the change in decision regions, into our EMCM framework.
We leave this as our future work. In this BMAL study, we
still use the change in the weights λ = {λ1, λ2, . . . , λM } to
approximate the change in GBDT and ignore the tree structure
change.

Similar to the above, we first approximate GBDT as a linear
regression model through feature mapping φ(x). Then, the
B-EMCM algorithm for GBDT is proceeded in a similar
fashion as above. The derivative of the error with respect to
the j th candidate example x+j (1 ≤ j ≤ k) after choosing the
first j − 1 ones is calculated as

∂Lx+j
(
λ∗|b∗j−1

)
∂λ∗

≈ (
f
(
x+j

)− y+j
)
φ
(
x+j

)− C
(
φ
(
x+j

)
, b∗j−1

)
j = 1, 2, . . . , k, 1 ≤ i ≤ j − 1. (26)

Similarly, the true model change is approximated with the
expectation calculation over Z possible labels that are esti-
mated through the ensemble B(Z), and the final B-EMCM
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Algorithm 4 B-EMCM for Nonlinear GBDT Regression
Input: the small initial labeled data set D = {(xi , yi )}ni=1, the
unlabeled pool set U , the size of the ensemble Z , the size of
the batch k, the GBDT model f (x; λ) trained on D.
1: initialize: b = ∅
2: B(Z) = { f1, f2, ..., fZ }
3: while | b |< k do
4: for each x in U do
5: Generate super features via Eq. (15).
6: {y1, y2, ..., yZ } ← B(Z)
7: Calculate the derivative via Eq. (26).
8: Estimate the true model change via Eq. (27).
9: end for

10: Select x∗ having the greatest model change.
11: U ← U \ x∗, b← b ∪ x∗
12: end while
Output: the batch b = {x∗1 , x∗2 , ..., x∗k }.

selection rule can be expressed as

x∗j = arg max
x∈U\b∗j−1

1

Z

Z∑
z=1

∣∣∣∣( f (x)−yz(x))φ(x)− C
(
φ(x), b∗j−1

)∣∣∣∣
j = 1, 2, . . . , k, 1 ≤ i ≤ j − 1. (27)

Algorithm 4 gives the pseudocode of B-EMCM for nonlinear
GBDT regression.

Remark: Based on the above derivation, we can get a
uniform view to our algorithms, i.e., EMCM and B-EMCM
are related to each other by

B-EMCM = EMCM− correlation
(
x+j , b∗j−1

)
(28)

implying that B-EMCM is the extension of EMCM by
taking particular consideration of the correlation between
the current candidate example x+j and the previous selected
examples b∗j−1.

VI. EXPERIMENTS

In this section, we present extensive experimental studies to
demonstrate the effectiveness and efficiency of our algorithms.

A. Data Sets and Experimental Setups

We use eight benchmark data sets from the UCI machine
learning repository1 and the StatLib from CMU.2 These data
sets are collected from various domains and have been exten-
sively used for testing regression models [17], [41]. Their
statistics are presented in Table I. We randomly split each
data set into three disjoint parts to construct the initial training
seed D, the unlabeled set U , and the test set T . In this paper,
we consider a hard AL scenario, where the size of initial
training set is small: D(10%) + U(70%) + T (20%). For the
features, we normalize the features as [18].

Two regression models are adopted as the basis learners: the
linear regression model and the GBDT model. The learning

1http://archive.ics.uci.edu/ml/
2http://lib.stat.cmu.edu/

TABLE I

STATISTICS OF THE EIGHT REGRESSION DATA SETS

rate α is empirically set to be 0.05, which is commonly used
in SGD. We use the standard bootstrap method [37] to estimate
the predictive distribution. That is, we randomly draw data sets
with replacement from the training set D, and each sample the
same size as the training set. We then refit Z bootstrap models
on these bootstrap data sets. To decide the optimal parameter,
i.e., the size of the ensemble Z , in bootstrap, we experiment
with six values of Z : Z = {3, 4, 5, 6, 7, 8}, and choose the
one having the best averaged performance. Here, we set Z = 4
in our experiments based on our empirical studies.

In our implementation, the AL process repeats ten iterations.
In each round of data sampling, 3% of the entire instances are
selected from U and labeled (i.e., k = 3%). In practice, the
choice of k highly relies on the budget available.

B. Comparison Methods and Evaluation Metrics

To test the effectiveness of our proposed methods,
we compare our algorithms with several state-of-the-art
AL competitors. Five baselines are included in our experi-
ments. Note that all the competitors are performed in the naive
batch mode, i.e., choosing the top k examples in each selection
round based on their usefulness measure, as the existing
BMAL methods are not readily applicable to regression.

1) P-ALICE: P-ALICE is a statistically optimal AL strategy
using the bias-variance decomposition, which aims to
minimize the conditional variance expected over training
output noise given training input points [13].

2) P-FVW : P-FVW is another variance reduction technique,
which is to minimize the full variance expected over
both training output noise and training examples [13].

3) QBC: The QBC for regression approach chooses the
data point, which has the largest variance among the
members’ prediction [23], [26].

4) Greedy: The greedy approach aims to select the new
example having the largest minimum distance from
labeled data [17].

5) RAND: The random data selection, which is widely used
in practical applications, represents a baseline.

Furthermore, our model change-based AL algorithms are
conducted in the following three versions.

1) Naive Batch EMCM: Our proposed EMCM algorithms
to choose the top k examples in each AL iteration and
ignore the information overlap among these selected data
points (denoted by Nk-EMCM).
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Fig. 1. Experimental results for linear regression on the UCI and StatLib data sets. The evaluation metric used is MAE. (a) PM10. (b) Housing. (c) Forest.
(d) CPS. (e) Concrete. (f) Redwine. (g) Whitewine. (h) Bike.

2) B-EMCM: Our proposed B-EMCM algorithms to con-
sider the correlation among the selected k examples in
the batch (denoted by Bk-EMCM).

3) Sequential EMCM: The sequential type of EMCM,
which our batch mode Bk -EMCM algorithms attempt to
match, is to retrain the model after every new example is
chosen and added to the training set. Hence, sequential
EMCM (denoted by N1-EMCM) can be viewed as a
special case of Nk-EMCM when k = 1. The SAL algo-
rithm, which is generally more example-efficient than
their batch counterparts, since each data example is
chosen with more information, has been regarded as a
gold standard in the prior BMAL work [4], [9].

For evaluation, we here use two popular error-based met-
rics: mean absolute error (MAE) and root mean squared
error (RMSE), to verify the performance of each method on
the test set

MAE = 1

|T |
|T |∑
i=1

| f (xi)− yi | (29)

RMSE =
√√√√ 1

|T |
|T |∑
i=1

( f (xi )− yi )2 (30)

where |T | denotes the size of the test set, and yi and f (xi )
are the ground truth and the prediction of the example xi ,
respectively. In addition to these error-based metrics, we fur-
ther employ a correlation-based metric, R-square, to validate

the performance of each algorithm

R-square = 1−
∑|T |

i=1(yi − f (xi ))
2

∑|T |
i=1(yi − ȳ)2

(31)

where ȳ denotes the mean of yi . To avoid random fluctuation,
each experiment is repeated ten times by varying the training-
pool-test sets, and the averaged results are reported.

C. Error-Based Experimental Results

The comparisons of the eight sample selection algorithms
on these benchmark data sets are presented in Figs. 1–4. The
x-axis represents the number of iterations for the AL process,
and the y-axis denotes the value of MAE and RMSE. Several
general observations, as shown in Figs. 1–4, are explained as
follows.

1) In general, we see that both MAE and RMSE decrease
when the number of training points increases for all
of eight algorithms, which matches the intuition that
model performance is positively correlated with the size
of training sets.

2) Our derived model change-based methods (N1-EMCM,
Bk-EMCM, and Nk-EMCM) obviously perform bet-
ter than the five baseline algorithms (i.e., P-ALICE,
P-FVW , QBC, greedy, and RAND) in most evaluation
points. A possible explanation is that our proposed
strategies estimate the model change as the gradient of
the squared-error loss, which is directly related to the
objective function RMSE and MAE used to evaluate
the models. Thus, the examples chosen by these three
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Fig. 2. Experimental results for linear regression on the UCI and StatLib benchmark data sets. The evaluation metric used is RMSE. (a) PM10. (b) Housing.
(c) Forest. (d) current population survey. (e) Concrete. (f) Redwine. (g) Whitewine. (h) Bike.

Fig. 3. Experimental results for GBDT regression on the UCI and StatLib benchmark data sets. The evaluation metric used is MAE. (a) PM10. (b) Housing.
(c) Forest. (d) CPS. (e) Concrete. (f) Redwine. (g) Whitewine. (h) Bike.

methods are more likely to contribute positively to
improve the regression model.

3) The sequential type of EMCM algorithm, N1-EMCM,
is observed to perform the best among the eight

methods in most cases during the entire sampling
process, demonstrating that the SAL method is more
effective in choosing the most informative examples to
improve the model quality. This is due to the reason
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Fig. 4. Experimental results for GBDT regression on the UCI and StatLib benchmark data sets. The evaluation metric used is RMSE. (a) PM10. (b) Housing.
(c) Forest. (d) CPS. (e) Concrete. (f) Redwine. (g) Whitewine. (h) Bike.

that the model is updated every new example is chosen
and added to the training set, so that each example is
selected with more information.

4) For linear regression, we see that Nk-EMCM performs
slightly poor at the very beginning of AL process on
several data sets, e.g., Housing, Redwine, Whitewine,
and Bike. After two or three active sampling iterations,
the performance of the Nk-EMCM method increases
quickly and starts to outperform baseline methods. This
phenomenon is in fact expected as we discussed in
Section III-B, that is, the model performance may be
hurt by selecting some outliers at the initial stages of
data selection. However, to maximize the change again,
Nk-EMCM will certainly select good examples in the
latter AL round, and hence, the negative influence of the
outliers is offset. Since the amount of outliers is usually
very restricted, the proposed Nk-EMCM approach could
perform well with more data queried, which is still very
promising in practice.

5) In contrast, the proposed Bk -EMCM strategy performs
much better than Nk-EMCM at the initial stage of AL
in most cases. The results may be based on the possible
reason that the Bk -EMCM takes particular consideration
of the relationship among the selected data examples at
the batch, and therefore, the negative effect of the out-
liers could be relieved effectively. Furthermore, we can
observe that our proposed Bk -EMCM algorithm is able
to closely match the performance of N1-EMCM, espe-
cially at the latter cycles, indicating that the proposed
Bk-EMCM method accurately simulates the behavior of
the sequential method.

6) Furthermore, unlike the results for linear regression
where the performance of the model is decreased greatly
at the initial stage of the sampling process [e.g., as
presented in Fig. 2(b)], possibly due to the inclusion
of the outliers, we can observe that Nk-EMCM con-
sistently achieves lower MAE and RMSE scores than
the other five sampling methods during the whole data
selection process for GBDT-based regression (as shown
in Figs. 3 and 4). This is likely due to the reason that
GBDT is very robust to outliers.

7) To better verify the effectiveness of our AL algorithms,
we carry out significance test on the comparisons. Due to
the space constraint, we only present the statistical test
in terms of RMSE. Similar results could be obtained for
MAE based on our empirical studies. Tables II and III
detail the comparisons of one-tailed paired T -test
of Bk-EMCM and Nk-EMCM versus the compared
algorithms. Here, win% denotes the percentage of
evaluation points where our algorithms (Bk-EMCM and
Nk-EMCM) statistically outperform the baselines at
95% significance level (p<0.05), which is a standard
method of using the paired T -test [7]. We can observe
that our proposed AL algorithms perform significantly
better than the compared methods in most cases.

D. Correlation-Based Experimental Results

Due to the space limit, here we only report the experimental
results on four data sets, i.e., Concrete, Redwine, Whitewine,
and Bike for the linear regression model in terms of
R-square.
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Fig. 5. Experimental results on (a) Concrete, (b) Redwine, (c) Whitewine, and (d) Bike with linear regression in terms of R-square.

TABLE II

WIN% OF Bk -EMCM AND Nk -EMCM VERSUS THE OTHER ALGORITHMS

IN ONE-TAILED PAIRED T -TEST AT 95% SIGNIFICANCE LEVEL

( p < 0.05) FOR LINEAR REGRESSION IN TERMS OF RMSE

Fig. 5 shows the results on these data sets. We can see
that our proposed algorithms still perform better than the
baselines, demonstrating the effectiveness of our proposed AL
algorithms. Similar results could be obtained on other data sets
based on our empirical studies, which are omitted here.

E. Time Performance

In this section, we first analyze the computation complexity.
Then, we compare the averaged CPU running time to examine
the efficiency of our proposed AL algorithms.

As the amount of unlabeled examples is overwhelming
over the labeled examples in AL, we only consider the time
required by the informativeness computation with respect to
unlabeled examples and exclude the data selection time, which
is identical to the previous work [39]. Assume that there are
m unlabeled examples in the pool set, and x+ ∈ R

d is a
d-dimensional feature vector. Recall that Z is the size of
bootstrap for predictive distribution estimation and M is the
number of individual trees in GBDT. For linear regression, the
computation time needed by our Nk-EMCM is O(Zmd). For
Bk-EMCM, the time complexity is O(k Zmd) if we choose a

TABLE III

WIN% OF Bk -EMCM AND Nk -EMCM VERSUS THE OTHER ALGORITHMS

IN ONE-TAILED PAIRED T -TEST AT 95% SIGNIFICANCE LEVEL

( p < 0.05) FOR GBDT REGRESSION IN TERMS OF RMSE

batch of k examples. Because k is a proportion of the unla-
beled examples, the cost of Bk-EMCM is actually O(Zm2d),
indicating that the time increase is superlinear. For GBDT
regression, due to the added step of feature mapping,
the time complexity for Nk-EMCM and Bk -EMCM are
O((Z + d)mM) and O((Zm + d)mM), respectively.

Now, we compare the CPU run time taken by our proposed
algorithms versus the compared approaches. Due to the space
limitation, we only present the comparisons of our proposed
algorithms with linear regression. Here, we simply fix the
batch size as 10. All algorithms were implemented using C++
in the Linux environment on a standard desktop PC with
2.27-GHz CPU (Intel Xeon) and 4 GB of memory. Table IV
presents the comparison results, together with the size of
the pool set. As compared in Table IV, the CPU running
time of Nk-EMCM is comparable with QBC and greedy,
but much more efficient than the other two competitors,
i.e., P-ALICE and P-FVW . In addition, we see that the
time cost for Bk -EMCM is relatively higher than that of
the Nk-EMCM counterparts. This is due to the reason that
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TABLE IV

CPU RUNNING TIME FOR LINEAR REGRESSION (IN SECONDS). THE BATCH SIZE k = 10

Fig. 6. Runtime of Bk -EMCM for linear regression.

Fig. 7. Model change-based AL via MapReduce, and the model change
computation is parallelized.

Bk-EMCM has to spend additional time in calculating the
relationship among the selected examples in the set to reduce
data redundancy. Finally, N1-EMCM is observed to have the
highest time complexity, since it has to retrain the model every
new example is added to the training set, which matches our
intuition.

For the proposed Bk -EMCM methods, we investigate their
scalability by varying the size of batch from 10 to 50.
Fig. 6 shows the CPU run time versus data sets, varying
the sizes of the batch. We see that the time increase for
Bk-EMCM appears superlinear with the required size of the
batch, especially on our largest data set (i.e., Bike), which
certainly matches our time complexity analysis in the above.
Here, the running time varies from 1 to 290 s.

We here discuss the usability of our Bk -EMCM algorithms
in the industrial environment. Although the time cost increases
greatly with the batch size k, based on our real industry experi-
ences, it still can be acceptable in many practical applications.

First, in practice, a small fixed value of k might be sufficient to
obtain satisfied results, in which case the batch size k becomes
a constant and the time increase becomes linear again. Second,
because the model change for the j th candidate data example
could be independently calculated of each other, we can use
multiple machines to run the algorithms in parallel with the
Hadoop–MapReduce platform, and therefore, the computa-
tional time can be saved significantly. Fig. 7 shows our model
change-based AL using MapReduce. The process is as follows.
To choose the j th example, every mapper returns the top-1
data example inside its pool and the model change caused by
this example. The reducer reads all these top-1 examples from
different mappers and selects the final example x∗j , which has
the maximum model change. Then, the Master deletes x∗j from
the pool and starts to select the ( j + 1)th example.

VII. EXTENSIONS

The proposed expected model change-based AL framework
is flexible, which could be generalized to other base learners.
As the essential step of our proposed EMCM framework is to
accurately estimate the model change, it is naturally applicable
to the SGD-based model. A special case here is the regularized
model, such as ridge regression. Based on the conclusions
of the previous work [22], we can still approximate the
model change as the gradient of the loss function at the new
example.

However, applying EMCM to the non-SGD models is
more complex. The key challenge lies in the measurement
of model change, and hence, we need to carefully design
the AL methods, taking particular consideration of the unique
characteristics of learners. Because we target on AL in the
context of regression in this paper, we generalize our proposed
EMCM framework to GP regression here.

GP regression is a kernel approach, which can be formulated
as the following model on the training set D = {(xi , yi )}ni=1:

f (x;α) =
n∑

i=1

αiκ(xi , x) (32)

where κ is a given kernel function. The weight vector (para-
meter) α = [α1, . . . , αn]T can be obtained as

α = (
K+ σ 2

n I
)−1Y (33)

where K and I are the kernel matrix of the training set D
and the identity matrix, respectively. σ 2

n is the assumed noise
variance and Y is the label vector.
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Similar to above, suppose a candidate data point x+ is added
to the training set with a given label y+, the updated parameter
vector α∗ can be computed with the closed form

α∗ =
[
α

0

]
+ κT α − y+

σ 2
f∗ + σ 2

n

[(
K+ σ 2

n I
)−1

κ

−1

]
(34)

where κ is the vector of pairwise kernel values of the training
set and x+, and σ 2

f∗ is the predictive variance of x+. A detailed
proof of this closed form can be found in [40].

Again, we can approximate the true model change with the
expectation calculation, and the AL criterion is

x∗ = arg max
x∈U

∫
Y
||α∗ − [αT , 0]T ||P(y|x)dy. (35)

In general, our EMCM framework is generic, which could be
generalized to the non-SGD-based models. The key challenge
lies in getting the closed-form solution of model change.

VIII. CONCLUSION AND FUTURE WORK

In this paper, a novel AL framework, EMCM, is derived for
regression. In light of the SGD learning rule, we use the deriv-
ative of the loss function to estimate the model change. Under
the EMCM framework, we develop novel AL algorithms
for both linear regression and nonlinear GBDT regression,
which aim to select the example that leads to the maximum
model change. Furthermore, by simulating the behavior of
the SAL algorithms when applied for k iterations, we extend
EMCM to BMAL algorithms (B-EMCM) to simultaneously
choose a set of k most informative instances at each query
time. Extensive experimental results on both UCI and StatLib
benchmark data sets have demonstrated the effectiveness and
the efficiency of our proposed algorithms.

The proposed EMCM framework is flexible. We also extend
it to the GP regression in order to show its usability in a wide
range of applications.

As our proposed B-EMCM methods are the approximations
of the SAL counterparts, a potential limitation is that the
estimate accuracy in the model change may decrease with the
increase in the size of the batch, resulting in error accumu-
lation. One possible solution to this problem is to adaptively
determine the batch size taking particular consideration of the
loss discrepancy between the approximated model and the true
model trained after every newly selected data example. We will
leave this as our future work. We also plan to derive some solid
theoretical foundations on the proposed algorithms, including
label complexity bounds and generalization error bounds.
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