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Abstract

Motivation: Metabolic network reconstructions are often incomplete. Constraint-based and

pattern-based methodologies have been used for automated gap filling of these networks, each

with its own strengths and weaknesses. Moreover, since validation of hypotheses made by gap

filling tools require experimentation, it is challenging to benchmark performance and make im-

provements other than that related to speed and scalability.

Results: We present BoostGAPFILL, an open source tool that leverages both constraint-based and

machine learning methodologies for hypotheses generation in gap filling and metabolic model refine-

ment. BoostGAPFILL uses metabolite patterns in the incomplete network captured using a matrix fac-

torization formulation to constrain the set of reactions used to fill gaps in a metabolic network. We for-

mulate a testing framework based on the available metabolic reconstructions and demonstrate the

superiority of BoostGAPFILL to state-of-the-art gap filling tools. We randomly delete a number of reac-

tions from a metabolic network and rate the different algorithms on their ability to both predict the

deleted reactions from a universal set and to fill gaps. For most metabolic network reconstructions

tested, BoostGAPFILL shows above 60% precision and recall, which is more than twice that of other

existing tools.

Availability and Implementation: MATLAB open source implementation (https://github.com/

Tolutola/BoostGAPFILL)

Contacts: toyetunde@wustl.edu or muhan@wustl.edu.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-scale metabolic reconstructions are the basis of constraint-

based analyses, which are finding ever increasing applications in

metabolic engineering for industrial, medical and environmental pur-

poses (Bordbar et al., 2014). One of the major reasons for

inconsistencies between genome-scale model predictions and experi-

mental measurements is the presence of gaps in the network recon-

struction (Palsson, 2015). Knowledge gaps are the result of missing

information on genes, proteins, or reactions, while scope gaps occur

due to the fact the metabolic network is only one of several integrated
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cellular networks (e.g. signaling networks). Thus, the consumption

and production of a metabolite might not be fully captured by metab-

olism alone. Moreover, some microbes that depend on communal

support of other organisms actually have gaps in their metabolism.

Therefore, automated gap filling tools are merely hypotheses gener-

ators whose predictions need to be verified experimentally.

Two general approaches to tackle the challenge of network gaps

have been reviewed (Orth and Palsson, 2010). The first involves the

use of algorithms based on network topology and genomic data.

These are mostly concerned with finding gene candidates for orphan

reactions. The second seeks to find missing reactions by minimizing

the difference between computation and experiments. Gap-filling al-

gorithms serve a dual benefit of model refinement and discovery of

new biological capabilities (Orth and Palsson, 2010). Thus, efficient

and robust gap-filling algorithms would prove invaluable in the devel-

opment of high fidelity metabolic network reconstructions

(Latendresse et al., 2012). Newer approaches have sought to uncover

inherent patterns in metabolic networks and have shown promise in

predicting diverse network functions (Ganter et al., 2014). However,

some of the predictions based on these methods might not be bio-

logically realizable. Constraint-based methods, on the other hand,

may not capture the information embedded in the network topology.

It is difficult to test the accuracy of gap filling algorithms because

verification usually involves experimentation to examine the biolo-

gical relevance of suggested reactions. Thus, it is important to

develop benchmark tests for gap filling algorithms to increase confi-

dence in their use.

In this work, we present a novel gap-filling framework,

BoostGAPFILL, which integrates constraint-based and pattern-

based methods Zhang et al. (2016) for metabolic network refine-

ment. Our framework is inspired by machine learning methods de-

veloped for the Netflix prize (Koren et al., 2009). We test the

robustness of the gap-filling algorithms using artificial gaps (i.e. me-

tabolites that cannot be produced or consumed at steady state) to

simulate poorly characterized biochemistry. The gaps are introduced

by randomly deleting reactions from the network. We then rank the

algorithms on their ability to predict the actual deleted reactions

from a universal reactions database and unblock blocked metabol-

ites (i.e. gaps).

2 Methods

Our novel algorithm combines machine learning and constraint-

based methods to identify possible candidates for missing reactions.

We use machine learning to characterize the topology of the incom-

plete metabolic network and predict a set of possible reactions.

The preliminary predictions are integrated with standard constraint-

based gap filling in two ways: (i) using the preliminary predictions

as weighting factors in constraint-based algorithms and (ii) solving

the pattern-based problem simultaneously with the standard gap

filling formulation (Maranas and Zomorrodi, 2016). Details of this

are described in the supplementary file. The basic concepts of the

pattern module of our algorithm are shown in Figure 1. The math-

ematical details are presented in Box S1 of the supplementary file.

2.1 Step A: conversion of incomplete stoichiometric

matrix to metabolite adjacency matrix
The binary incidence matrix, bS, can be derived from the stoichio-

metric matrix, S, by simply placing a one if the corresponding entry

in the stoichiometric matrix is not zero, and a zero if otherwise. Post

multiplying bS with its transpose gives an m by m metabolite

adjacency matrix, A, where m is the number of metabolites. A pro-

vides information about the relationship between the different me-

tabolites. Each entry gives the number of reactions in which the two

metabolites jointly participate.

2.2 Step B: completion of metabolite adjacency matrix

using matrix factorization
The entries of A conceptually represent the ranking of the relation-

ship between metabolites. A is incomplete and we employ the stand-

ard matrix factorization model (Koren et al., 2009) as implemented

in the free tool libFM (Rendle, 2012) for its completion. Slight

modifications are discussed in Box 1 of the supplementary file.

2.3 Step C: prediction of new reactions from a universal

reaction set
Next, we attempt to recover the completed S by an integer least

squares optimization in which we select reactions from a universal

set that best match the completed A. The integer least squares opti-

mization is relaxed to avoid long computational times associated

with integer optimization problems. The result is a ranking of all re-

actions. Selections are made based on the top percent threshold or

the top number of reactions. This step (of selecting reactions from a

set based on some constraints) is common to standard gap filling

tools, and is the step where we integrate standard constraints.

2.4 Modes of running BoostGAPFILL
BoostGAPFILL can be run in three modes (shown in Supplementary

Fig. S1). Mode 1: the tool is run as described above. Thus, the

Fig. 1. Basic concepts of the pattern-based module of BoostGAPFILL (right)

contrasted with constraint-based procedures (left). In BoostGAPFILL, the par-

tial adjacency matrix is derived from the incomplete stoichiometric matrix.

The partial adjacency matrix is completed using matrix factorization models.

Then reactions are selected from a universal database. The selection is for-

mulated as an integer least squares problem in which the difference between

the completed adjacency matrix is transformed to the stoichiometric matrix.

In constraint-based procedures, the reactions are selected directly from the

universal reactions database using an optimization criterion, such as min-

imum number of reactions required to fill the gaps in the network
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predictions are based solely on the inherent metabolite patterns in

the incomplete network. This mode is very accurate at capturing the

topological information in the network as seen in Figure 2 but does

not fill all the gaps. Mode 2: The pattern based module is used to

weight reactions in the universal database for use in FASTGAPFILL.

Thus, BoostGAPFILL is used as a preprocessing step for

FASTGAPFILL. This improves the fidelity of FASTGAPFILL as

demonstrated in Figure 2. Mode 3: In this mode, we include the flux

constraints (used in the standard constraint-based gap filling formu-

lation) in step C described above. This enables BoostGAPFILL to be

used for growth inconsistency reconciliation like tools such as

SMILEY.

Running BoostGAPFILL in mode 1 is preferred for initial screen-

ing of a large reactions database, with mode 2 and mode 3 preferred

for more biologically realistic predictions. Mode 2 is best for

pure gap filling while mode 3 can be used for growth data

reconciliation and predicting reactions to unblock metabolites in

turn. The limitations and technical implementation detials are dis-

cussed in the supplementary file.

3 Results

We test the performance of BoostGAPFILL on seven different meta-

bolic network reconstructions downloaded from the BiGG database

(King et al., 2016). Figure 2 presents the comparison of the perform-

ance of BoostGAPFILL and FASTGAPFILL on the E. coli model

iAF1260. BoostGAPFILL automatically fixes gaps (also see

Supplementary Fig. S2). It also appears to perform well even when a

large number of reactions are missing. The algorithm was able to pre-

dict several new reactions added in iJO1366 (the latest E.coli model)

from an earlier version (iAF1260) including new content (15 gap fill-

ing reactions and 4 new content reactions), as shown in

Supplementary Figure S3 in the supplementary file. While tools like

FASTGAPFILL (Thiele et al., 2014) and SMILEY (Reed et al., 2006)

perform well in predicting reactions that close as many gaps as pos-

sible (Fig. 2C), BoostGAPFILL outperforms them in terms of preserv-

ing the network topology (Fig. 2). This illustrates the fact that

constraint-based techniques can sometimes fail to capture the

embedded patterns in metabolic networks and thus their predictive fi-

delity is compromised. BoostGAPFILL provides that missing function-

ality and easily integrates with the existing gap filling tools. Similar

performance was observed in other metabolic network reconstruc-

tions as seen in Supplementary Figures S4 and S6. BoostGAPFILL

can also make predictions of reactions contaning metabolites not in

the original network (see supplementary file for dicussion and

Supplementary Fig. S5).

4 Conclusions

A unique methodology, integrating topology-based and constraint-

based approaches to refining metabolic network reconstructions has

been presented. The performance of BoostGAPFILL has been rigor-

ously tested on different metabolic reconstructions. Approaches that

combine machine learning models and pure mechanistic models to

describe biological phenomena will prove useful in decoding com-

plex interactions that exist in living systems. Integrating pattern-

based methods with constraint-based techniques can potentially en-

hance their predictive fidelity in computational strain design for

metabolic engineering.
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