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ABSTRACT

Medical ontologies are widely used to represent and organize medi-

cal terminologies. Examples include ICD-9, ICD-10, UMLS etc. The

ontologies are often constructed in hierarchical structures, encod-

ing the multi-level subclass relationships among different medical

concepts, allowing very fine distinctions between concepts. Medical

ontologies provide a great source for incorporating domain knowl-

edge into a healthcare prediction system, which might alleviate the

data insufficiency problem and improve predictive performance

with rare categories. To incorporate such domain knowledge, Gram,

a recent graph attention model, represents a medical concept as a

weighted sum of its ancestors’ embeddings in the ontology using an

attention mechanism. Although showing improved performance,

Gram only considers the unordered ancestors of a concept, which

does not fully leverage the hierarchy thus having limited expressibil-

ity. In this paper, we propose Hierarchical Attention Propagation

(HAP), a novel medical ontology embedding model that hierar-

chically propagate attention across the entire ontology structure,

where a medical concept adaptively learns its embedding from all

other concepts in the hierarchy instead of only its ancestors. We

prove that HAP learns more expressive medical concept embed-

dings ś from any medical concept embedding we are able to fully

recover the entire ontology structure. Experimental results on two

sequential procedure/diagnosis prediction tasks demonstrate HAP’s

better embedding quality than Gram and other baselines. Further-

more, we find that it is not always best to use the full ontology.

Sometimes using only lower levels of the hierarchy outperforms

using all levels.

CCS CONCEPTS

· Computing methodologies → Knowledge representation

and reasoning; · Applied computing → Health informatics.
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1 INTRODUCTION

In recent years, tremendous effort has been put into developing

intelligent healthcare prediction systems leveraging the power of

big data and machine learning [13, 17]. Existing systems often face

one challenge: how to combine power of data-driven algorithms

with domain knowledge from human experts. A pure data-driven

model often requires a huge data volume to achieve a satisfying

performance, and typically has a poor performance when predicting

cases rarely present in the training data [4]. A proper incorporation

of structured domain knowledge, such as the categorization or

grouping relationships among different medical concepts might

alleviate such problems. For example, disease 𝑎 and 𝑏 are both

subclasses of disease class 𝑐 . Then, we may expect 𝑎 and 𝑏 to have

similar properties, so that even training data for 𝑏 are rare, we could

still learn to predict 𝑏 with the help of 𝑎.

Luckily, there exist many well-established ontologies of medical

concepts encoding such structured domain knowledge. Examples

include International Classification of Diseases (ICD) [24], Clinical

Classifications Software (CCS) [29], Unified Medical Language Sys-

tem (UMLS) [1], Systematized Nomenclature of Medicine-Clinical

Terms (SNOMED-CT) [29], and National Drug Code (NDC) etc.

These ontologies often have a hierarchical top-down structure,

which systematically organizes medical concepts into categories

and subcategories of different levels from general to specific. Such

hierarchical structures make identifying particular concepts and

searching related concepts much easier. The contained structured

domain knowledge can also potentially advance the power of health-

care prediction models. For example, nodes (medical concepts) close

to each other in an ontology tend to be assigned to similar patients.

To incorporate the domain knowledge within an ontology into a

machine learning algorithm, Gram, a graph-based attention model

has been proposed recently [5]. Gram learns an embedding for each

medical concept by adaptively summing its ancestors’ embeddings

via an attention mechanism, so that the parent-child relations along

a node’s paths to the root are encoded into the node’s embedding.
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Figure 1: Comparison betweenGram andHAP. Gram only considers a node’s unordered ancestor set to compute its embedding.

HAP hierarchically propagates information across the graph. In the bottom-up round, each parent aggregates information

from its children. In the top-down round, each child aggregates information from its parents. The final embedding of each

node effectively absorbs information from not only its ancestors, but the entire graph (ancestors, descendants, siblings and

others).

Further, two leaf concepts sharing many common ancestors tend

to have similar embeddings, which implicitly transfers knowledge

between concepts and augments those medical concepts with few

occurrences in the training data.

As a first attempt to learn from medical ontologies, Gram has

several shortcomings. Firstly, Gram does not consider the order of

a node’s ancestors ś a node’s lower ancestors and higher ancestors

are symmetrically treated in the attention mechanism, which loses

the hierarchical information. Secondly, Gram only considers the

ancestor information of a node. It oversimplifies the ontology struc-

ture by ignoring the descendants and siblings of a node completely.

Both of the shortcomings can be addressed by a more advanced

graph attention model considering the full hierarchical structure.

In this paper, we propose the Hierarchical Attention Propagation

(HAP) model. HAP does two rounds of knowledge propagation to

learn embeddings of medical concepts from the entire ontology:

first a bottom-up propagation from leaves to root, and second a top-

down propagation from root to all leaves. Figure 1 shows its differ-

ence from Gram. In the bottom-up propagation, each node updates

its embedding by adaptively combining its children’s embeddings

using an attention mechanism. In the top-down propagation, nodes

adaptively combine their parents’ embeddings using the same at-

tention mechanism. Such a two-round propagation is inspired by

the Belief Propagation algorithm [25] in graphical models, which

is widely used to perform exact inference on tree/polytree models.

The two-round knowledge propagation process in HAP effectively

distributes a node’s attention across the graph, making a node’s

final embedding no longer only a combination of its ancestors but

aggregate information over the entire ontology. We prove that HAP

is strictly more expressive than Gram, allowing any node embed-

ding to reconstruct the complete ontology. Experimental results on

two sequential procedure/diagnosis prediction tasks reveal HAP’s

improved performance over Gram and other baselines.

2 PRELIMINARIES

2.1 Notations

We use 𝑐1, 𝑐2, . . . , 𝑐 |C | ∈ C to denote the set of all leaf medical codes

of a medical ontology G, and use 𝑐 |C |+1, 𝑐 |C |+2, . . . , 𝑐 |C |+ |C′ | ∈ C′

to denote the non-leaf nodes (which are ancestors of the leaf nodes).

The ontology G is expressed as a directed acyclic graph (DAG),

where nodes are hierarchically arranged in different levels, with

the top level consisting of the single root node and the bottom

level consisting of all the leaf nodes C. Examples include the ICD-9,

ICD-10 and CCS. We use knowledge DAG to refer to the ontology

G. In the knowledge DAG, a parent represents a related but more

general concept over its children, such as the class of a disease or

the category of a procedure. We use 𝐴(𝑖) to denote the set of 𝑐𝑖 ’s

ancestors and 𝑐𝑖 itself. We use 𝑃 (𝑖) and 𝐶 (𝑖) to denote the parent

set and children set of 𝑐𝑖 (both including 𝑐𝑖 itself), respectively.

We will consider sequential visit data from patients’ electronic

health records (EHR) over time. The sequential visit data of a patient

is denoted by 𝑉1,𝑉2, . . . ,𝑉𝑇 , where each visit contains a subset of

medical codes𝑉𝑡 ⊆ C, indicating the procedures/diagnoses that the

patient receives at the 𝑡 th visit. 𝑉𝑡 can be represented as a binary

vector x𝑡 ∈ {0, 1} |C | , where the 𝑖th element is 1 if 𝑐𝑖 ∈ 𝑉𝑡 . For

ease of presentation, we will propose our algorithms for a single

patient in the rest of the paper. The sequential procedure/diagnosis

prediction task is to predict the procedure/diagnosis codes 𝑉𝑡+1
given the past visits 𝑉1,𝑉2, . . . ,𝑉𝑡 .

2.2 Gram for medical ontology embedding

To leverage the parent-child relationships of the ontology, Gram

uses an attention mechanism to adaptively combine a node’s ances-

tors’ embeddings as its new embedding. More specifically, in the

knowledge DAG, every node 𝑐𝑖 is first assigned an initial basic em-

bedding e𝑖 (can be random embeddings or pretrained embeddings

from other sources of information). Then, the final embedding g𝑖
for 𝑐𝑖 is given by a weighted sum of {e𝑗

�

� 𝑗 ∈ 𝐴(𝑖)}:

g𝑖 =
∑

𝑗 ∈𝐴(𝑖)

𝛼𝑖 𝑗e𝑗 , (1)

where the weights are computed by the attention mechanism:

𝛼𝑖 𝑗 =
exp(𝑓 (e𝑖 , e𝑗 ))

∑

𝑘∈𝐴(𝑖) exp(𝑓 (e𝑖 , e𝑘 ))
. (2)

Here, 𝑓 (e𝑖 , e𝑗 ) is a multi-layer perceptron (MLP) which outputs a

scalar value representing the raw attention between e𝑖 and e𝑗 . The

Softmax normalizes the attention weights so that they sum to 1.

The new embeddings are then used to represent the medical

codes in the sequential visit data, which are fed to a RNN to train

a sequential diagnosis prediction model in an end-to-end fashion.
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By leveraging the ontology, Gram has improved predictive perfor-

mance, especially for predicting medical codes less observed in the

training data. However, since only the ancestors of a node are con-

sidered, the domain knowledge within the ontology is not fully

leveraged. Further, the ancestors from lower levels and higher lev-

els are treated symmetrically in (1). Thus, the order of a node’s

ancestors is completely ignored, which might lose important in-

formation about the hierarchy.

3 METHODOLOGY

In this paper, we propose Hierarchical Attention Propagation (HAP),

a novel medical ontology embedding method which 1) fully lever-

ages the knowledge DAG, and 2) respects the node ordering within

the hierarchy. HAP does two rounds of knowledge propagation to it-

eratively update each level’s nodes’s embeddings: first a bottom-up

propagation and second a top-down propagation.

Suppose the ontology has 𝐿 levels of nodes, where level 1 consists

of the single root node and level 𝐿 consists of only leaf medical codes.

Level 2, 3, . . ., 𝐿 − 1 can contain either intermediate category nodes

or leaf medical codes (because somemedical codes do not have a full

𝐿 levels of hierarchy). In the beginning, every node embedding g𝑖 is

initialized using a basic embedding e𝑖 . In the bottom-up propagation

round, we sequentially update the embeddings of nodes from level

𝐿 − 1, level 𝐿 − 2, . . ., until level 1. For node 𝑐𝑖 from level 𝑙 −

1, we update its embedding by adaptively combining its current

embedding with its children’s embeddings from level 𝑙 using an

attention mechanism, given by:

g
(𝑙−1)
𝑖 =

∑

𝑗 ∈𝐶 (𝑖)

𝛼𝑖 𝑗g
(𝑙)
𝑗 , (3)

where g
(𝑙)
𝑗 ∈ R𝑑𝑔 denotes the embedding of node 𝑗 before we start

updating nodes from level 𝑙 −1. We use 𝑑𝑔 to denote the embedding

size. The attention weight 𝛼𝑖 𝑗 is given by:

𝛼𝑖 𝑗 =
exp(𝑓 (g

(𝑙)
𝑖 , g

(𝑙)
𝑗 ))

∑

𝑘∈𝐶 (𝑖) exp(𝑓 (g
(𝑙)
𝑖 , g

(𝑙)

𝑘
))
, (4)

where 𝑓 (g
(𝑙)
𝑖 , g

(𝑙)
𝑗 ) is an MLP to compute the scalar raw attention

between g
(𝑙)
𝑖 and g

(𝑙)
𝑗 . In this work, we use a two layer neural

network following [5]:

𝑓 (g
(𝑙)
𝑖 , g

(𝑙)
𝑗 ) = u⊤𝑎 tanh(W𝑎 · concat(g

(𝑙)
𝑖 , g

(𝑙)
𝑗 ) + b𝑎), (5)

where W𝑎 ∈ R𝑑𝑎×2𝑑𝑔 is the weight matrix for the column concate-

nation of g
(𝑙)
𝑖 and g

(𝑙)
𝑗 , b𝑎 ∈ R𝑑𝑎 is the bias, and u𝑎 ∈ R𝑑𝑎 is the

weight vector for generating the scalar raw attention. Here, we use

𝑑𝑎 to denote the hidden size of 𝑓 .

The bottom-up propagation starts from the second-to-last level,

and goes all the way up to the root. The updating of nodes from the

same level can be performed in parallel, while the updating of an

upper level of nodes must wait until all its lower levels have been

updated.

Given the embeddings computed by the bottom-up propagation,

HAP performs the second round of propagation in a top-down

manner. Specifically, we sequentially update the embeddings of

nodes from level 2, level 3, . . ., until level 𝐿. For node 𝑐𝑖 from level

𝑙 + 1, we update its embedding using a similar attention mecha-

nism by adaptively combining its own embedding with its parents’

embeddings from level 𝑙 :

g
(𝑙+1)
𝑖 =

∑

𝑗 ∈𝑃 (𝑖)

𝛼𝑖 𝑗g
(𝑙)
𝑗 , (6)

where g
(𝑙)
𝑗 denotes the embedding of node 𝑗 before we start updat-

ing nodes from level 𝑙 + 1. The attention weight 𝛼𝑖 𝑗 is:

𝛼𝑖 𝑗 =
exp(𝑓 (g

(𝑙)
𝑖 , g

(𝑙)
𝑗 ))

∑

𝑘∈𝑃 (𝑖) exp(𝑓 (g
(𝑙)
𝑖 , g

(𝑙)

𝑘
))
, (7)

where 𝑓 has the same form as in Equation (5), with a different set

of parameters.

Finally, after the two rounds of propagation, each node has prop-

agated its łattentionž across the entire knowledge DAG. Thus, the

final embedding of each node effectively absorbs knowledge from

not only its ancestors, but also its descendants, siblings, and even

some distant nodes. Furthermore, as the propagation order is strictly

aligned with the hierarchy, the node ordering information is kept.

For instance, in the top-down propagation phase, the ancestors of a

node sequentially pass their information down level by level, rather

than passing them in one shot as in (1). This enables HAP to dis-

criminate ancestors/descendants from different levels and encode

the ordering information.

The final medical code embeddings are used in the sequential

procedure/diagnosis prediction tasks. Following [5], we adopt an

end-to-end RNN framework. The final embeddings g1, g2, . . . , g |C |

are concatenated column-wise to form an embedding matrix G ∈

R
𝑑𝑔×|C | . Remember each visit record 𝑉𝑡 can be represented as a

multi-hot vector x𝑡 . To get an embedding vector v𝑡 for all medical

codes in 𝑉𝑡 , we multiply G with x𝑡 and apply a nonlinear transfor-

mation by:

v𝑡 = tanh(Gx𝑡 ). (8)

Then, we sequentially feed v1, v2, . . . , v𝑇 into a RNN, which outputs

the hidden state for each visit. The hidden state h𝑡 for v𝑡 is given

by feeding the visit embeddings from all timestamps up to 𝑡 :

h𝑡 = RNN(v1, v2, . . . , v𝑡 ) . (9)

Then the prediction for the next timestamp 𝑡 + 1 is given by:

ŷ𝑡 = x̂𝑡+1 = Softmax(Wh𝑡 + b), (10)

where W ∈ R |C |×𝑑ℎ and b ∈ R𝑑ℎ are the weight and bias of the

final prediction network, and 𝑑ℎ is the dimension of the RNN’s

hidden states. The prediction ŷ𝑡 is a vector of dimension |C|, in-

dicating the probability of each medical code in visit 𝑡 + 1. Note

that following Gram, we use Softmax instead of dimension-wise

sigmoid to predict multiple medical codes in the next visit as it

showed better performance.

We use batch gradient descent to minimize the prediction loss

of all timestamps (except timestamp 1). The prediction loss for a

single patient is given by:

L(x1, x2, . . . , x𝑇 ) = −
1

𝑇 − 1

𝑇−1
∑

𝑡=1

[

x⊤𝑡+1 log(ŷ𝑡 )

+ (1 − x𝑡+1)
⊤ log(1 − ŷ𝑡 )

]

. (11)
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Following Gram, we not only train the model weights, but also train

the basic embeddings e𝑖 . The initialization of the basic embeddings

follow the same procedure as in Gram, i.e., using the GloVe [26]

embeddings learned from the cooccurrence matrix of augmented

codes within the visit records. See section 2.4 of [5] for more details.

Time complexity Since the attention computation is performed

on each edge twice, plus the self-attention on each node twice, the

time complexity of HAP is O(|E| + |C| + |C′ |) where E denotes

the edge set of the graph. In comparison, Gram computes attention

between each leaf node and all its ancestors. Since each leaf can

have at most |C′ | ancestors, Gram theoretically has a complexity of

O(|C| · |C′ |). Thus, which of HAP or Gram has a lower complexity

depends on the ontology structure used. One specific case (but also

a common DAG structure) is tree, where each node has at most one

parent. In this case, since |E | = |C| + |C′ | − 1, the complexity of

HAP becomes O(|C| + |C′ |). For Gram, assuming the height of the

tree is ℎ. Then the complexity of Gram is O(|C| ·ℎ).

4 THEORETICAL ANALYSIS

In this section, we theoretically analyze the properties of our pro-

posed Hierarchical Attention Propagation model, and show it has

strictly higher expressive ability than Gram in terms of encoding

knowledge DAGs.

Firstly, we use a counter example to show that recovering the

knowledge DAG from Gram embeddings is not always possible due

to its not encoding the order of the ancestors.

Proposition 1. With the embeddings g1, g2, . . . , g |C | computed

by Gram (Equation (1)), we cannot always reconstruct the knowledge

DAG.

Proof. Consider two DAGs, 𝐴 → 𝐵 → 𝐶 and 𝐵 → 𝐴 → 𝐶

(illustrated in Figure 2). In both DAGs, the leaf node 𝐶 gets the

same embedding using Equation (1). Thus, from 𝐶’s embedding we

cannot differentiate which is the original DAG. □

A

B

C

𝛼𝐶𝐵 ∙ 𝐞𝐵
𝛼𝐶𝐴 ∙ 𝐞𝐴

𝛼𝐶𝐶 ∙ 𝐞𝐶 𝐠𝐶+

DAG 1

B

A

C

𝛼𝐶𝐵 ∙ 𝐞𝐵
𝛼𝐶𝐴 ∙ 𝐞𝐴𝛼𝐶𝐶 ∙ 𝐞𝐶 𝐠𝐶+

DAG 2

Figure 2: In the two DAGs above, Gram will encode node 𝐶

into the same embedding, ignoring the order of its ancestors.

This counter-example reveals the limited expressive ability of

Gram due to its ignorance of the node ordering and insufficient use

of the hierarchy. It indicates that, after running Gram, the ontol-

ogy information is not fully kept in the medical code embeddings.

Thus, the Gram embeddings are essentially a lossy encoding of the

knowledge DAG. Next, we study the expressive ability of HAP. In

contrast to Gram, we show that from the HAP embeddings we can

perfectly reconstruct the knowledge DAG.

Theorem 2. Assume the basic embeddings e𝑖 are unique identifiers

of the medical concepts they represent. Then, from any embedding g𝑖
computed by HAP we can always perfectly reconstruct the knowledge

DAG, given that every update in (3) and (6) is injective.

Proof. In the bottom-up propagation, since every update in

(3) is injective, from the result g
(𝑙−1)
𝑖 of (3) we can reversely infer

g
(𝑙)
𝑖 and {g

(𝑙)
𝑗

�

� 𝑗 ∈ C(𝑖)}. Consider any node 𝑖 from level 𝐿 − 1.

From its updated embedding g
(𝐿−1)
𝑖 we can always reconstruct the

rooted sub-DAG formed by itself and its children. Now suppose

every embedding g
(𝑙)
𝑗 from level 𝑙 injectively encodes the sub-DAG

formed by 𝑗 and all of its descendants. Since Equation (3) is injective,

any embedding g
(𝑙−1)
𝑖 from level 𝑙 − 1 also injectively encodes the

sub-DAG formed by 𝑖 and all of its descendants. Applying structural

induction, we get the conclusion that the root embedding at the

end of the bottom-up propagation injectively encodes the entire

knowledge DAG.

In the top-down propagation, since every update in (6) is also

injective, any node embedding will injectively encode the sub-DAG

formed by itself and all of its ancestors (including the root) repre-

sented by their new embeddings from the bottom-up propagation.

Thus, after the top-down propagation, we can reconstruct the entire

knowledge DAG from any node embedding (by recovering the root

embedding). □

The above theorem demonstrates that the medical code em-

beddings learned by HAP are strictly more expressive than those

learned by Gram. It indicates that HAP embeddings can keep all

the knowledge from the ontology ś they are an lossless encoding

of the knowledge DAG. Note that Theorem 2 requires the update

functions in (3) and (6) to be injective. We now prove that the at-

tention mechanism can be an injective mapping. First, we need the

following lemma.

Lemma 3. Suppose 𝑎, 𝑏, 𝑎′, 𝑏 ′ are positive integers, 𝑎 ≠ 𝑏, 𝑎′ ≠ 𝑏 ′.

Then 2𝑎 − 2𝑏 = 2𝑎
′
− 2𝑏

′
if and only if 𝑎 = 𝑎′, 𝑏 = 𝑏 ′.

Proof. Firstly, it is straightforward that 𝑎 = 𝑎′, 𝑏 = 𝑏 ′ ⇒ 2𝑎 −

2𝑏 = 2𝑎
′
− 2𝑏

′
. We now prove that 2𝑎 − 2𝑏 = 2𝑎

′
− 2𝑏

′
only if 𝑎 = 𝑎′,

𝑏 = 𝑏 ′.

Since 𝑎 ≠ 𝑏 and 𝑎′ ≠ 𝑏 ′, if 𝑎 > 𝑏 and 𝑎′ < 𝑏 ′ or 𝑎 < 𝑏 and

𝑎′ > 𝑏 ′, the equation 2𝑎 −2𝑏 = 2𝑎
′
−2𝑏

′
will not hold. Thus, w.l.o.g.,

we assume 𝑎 > 𝑏 and 𝑎′ > 𝑏 ′. We have

2𝑏 (2𝑎−𝑏 − 1) = 2𝑏
′

(2𝑎
′−𝑏′ − 1) . (12)

We will prove 𝑎 = 𝑎′ and 𝑏 = 𝑏 ′ by contradiction. Assume 𝑏 ≠ 𝑏 ′.

Without loss of generality, we let 𝑏 > 𝑏 ′. Then,

2𝑏−𝑏
′

(2𝑎−𝑏 − 1) = (2𝑎
′−𝑏′ − 1) . (13)

In the above equation, LHS is a product of an even number and an

odd number which is even, while RHS is an odd number. Thus we

have reached a contradiction, which means that 𝑏 = 𝑏 ′. Eliminating

𝑏, 𝑏 ′ from 2𝑎 − 2𝑏 = 2𝑎
′
− 2𝑏

′
, we have 𝑎 = 𝑎′ too. □

Given Lemma 3, now we prove that the update functions in (3)

and (6) can indeed be injective.
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Theorem 4. There exists a function 𝑓 such that the update function

U(g𝑖 , {g𝑗 | 𝑗 ∈𝑆}) :=
∑

𝑗 ∈𝑆∪𝑖

𝛼𝑖 𝑗g𝑗 , (14)

where 𝛼𝑖 𝑗 =
exp(𝑓 (g𝑖 , g𝑗 ))

∑

𝑘∈𝑆∪𝑖 exp(𝑓 (g𝑖 , g𝑘 ))
, (15)

is injective w.r.t. its inputs (g𝑖 , {g𝑗 | 𝑗 ∈ 𝑆}), where g𝑖 and g𝑗 are unique

rational embeddings of the knowledge DAG nodes and 𝑆 ≠ ∅, 𝑖 ∉ 𝑆 .

Proof. Since an ontology has a limited number of concepts, g𝑖
and g𝑗 are from a countable universe. Thus, we can construct a

function 𝜙 such that 𝜙 (𝑖, 𝑗) maps every ordered (g𝑖 , g𝑗 ) pair to a

unique positive integer. Assume there are 𝑛 different g𝑖 choices in

the countable universe. Then, 𝜙 (𝑖, 𝑗) has 𝑛2 possible outputs.

Having 𝜙 (𝑖, 𝑗), we will construct 𝑓 such that 𝛼𝑖 𝑗 is unique for

every combination of (g𝑖 , g𝑗 ) and {g𝑘 |𝑘 ∈ 𝑆 ∪ 𝑖}. We let

𝑓 (g𝑖 , g𝑗 ) = 2𝜙 (𝑖, 𝑗) . (16)

Then, the attention weight 𝛼𝑖 𝑗 becomes

𝛼𝑖 𝑗 =
exp(2𝜙 (𝑖, 𝑗))

∑

𝑘∈𝑆∪𝑖 exp(2
𝜙 (𝑖,𝑘) )

=
1

1 +
∑

𝑘∈𝑆∪𝑖,𝑘≠𝑗 exp(2
𝜙 (𝑖,𝑘) − 2𝜙 (𝑖, 𝑗) )

. (17)

According to Lemma 3, 2𝜙 (𝑖,𝑘) − 2𝜙 (𝑖, 𝑗) is unique for each ordered

tuple of (𝑖, 𝑗, 𝑘) when 𝑗 ≠ 𝑘 . Considering the linear independence

among integer powers of 𝑒 , the summation in the denominator of

the above equation constitutes a unique irrational representation

for (𝑖, 𝑗, {𝑘 |𝑘 ∈ 𝑆}). This means𝛼𝑖 𝑗 is a unique irrational number for

each different (𝑖, 𝑗, 𝑆) (the reciprocal of an irrational number is also

irrational). Under fixed 𝑖 and 𝑆 , a unique irrational 𝛼𝑖 𝑗 is associated

with each g𝑗 . Besides, 𝛼𝑖 𝑗 for different 𝑗 are linearly independent

using rational coefficients (only multiplying 𝛼𝑖 𝑗 by integer powers

of 𝑒 can we recover other 𝛼𝑖 𝑗 ). Thus, the summation
∑

𝑗 ∈𝑆∪𝑖 𝛼𝑖 𝑗g𝑗
is a unique representation for (𝑖, 𝑆, { 𝑗 ∈ 𝑆 ∪ 𝑖}), which means it is a

unique representation for (𝑖, 𝑆). Therefore, U(g𝑖 , {g𝑗 | 𝑗 ∈ 𝑆}) is an

injective function. □

To model such an 𝑓 , we use an MLP (5) with trainable weights

thanks to the universal approximation theory [12]. Note that Theo-

rem 4 requires the node embeddings g𝑖 to be rational, which can be

easily satisfied for the initial basic embeddings. For intermediate

embeddings, the update functions in (3) and (6) will output irra-

tional vectors. We can apply another MLP to the updated vectors to

map them to rational vectors. In practice, however, this MLP is not

necessary due to the finite digits of computer when representing

numbers. We also find that the current scheme without another

MLP already works well.

5 EXPERIMENTS

5.1 Experimental setup

5.1.1 Prediction tasks: We use two datasets to evaluate the perfor-

mance of HAP: 1) We conduct a sequential procedure prediction

task using the ACTFAST datset, which contains procedure codes

of 13.7K patients who received surgery with anesthesia at Barnes-

Jewish Hospital between June 2012 and August 2016. Given the

history visit records of a patient’s ICD9 procedure codes, we aim

to predict all the procedure codes she/he will receive in the next

visit. 2) We conduct a sequential diagnosis prediction task using the

open-source MIMIC-III dataset [15], which contains the medical

records of 7.5K intensive care unit (ICU) patients over 11 years.

Given the history of a patient’s ICD9 diagnosis codes in each visit,

we aim to predict all the diagnosis codes she/he will receive in the

next visit. A summary of the two datasets are provided in Table 1.

Note that our setting is different from the setting of the Gram pa-

per [5], the tasks of which were to predict CCS single-level groups

of medical codes instead of the exact codes, where the cardinality

of the target space was much smaller than ours. In other words, our

tasks are more difficult and test a method’s exact code prediction

ability instead of its group prediction ability. Our setting is also

more general ś after getting the exact predictions, we can infer the

group predictions, while the inverse is not true.

Table 1: Statistics of ACTFAST and MIMIC-III datasets.

Dataset ACTFAST MIMIC-III

# of patients 13,658 7,499

# of visits 36,484 19,911

Avg. # of visits per patient 2.67 2.66

# of unique ICD9 codes 2,236 4,893

Avg. # of codes per visit 5.10 13.1

Max # of codes per visit 57 39

For both datasets, we filter out patients with less than two visits.

We calculate 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@𝑘 for each medical code. For each visit

𝑉𝑡 , we get a 1 if the target medical code appears in the top 𝑘 pre-

dictions and 0 otherwise. Then, we report the overall 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@𝑘

for all medical codes as well as 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@𝑘 for grouped medical

codes. To calculate grouped 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@𝑘 , we first sort all possible

target codes by their counts in the training data. Then, we divide

all target codes into four groups [0, 25], [25, 50], [50, 75], [75, 100]

with each group’s codes having the same summed counts. That is,

group [0, 25] contains the the rarest medical codes which constitute

25% of the code counts in the training data. Group [75, 100], on

the other hand, contains the most frequent codes which in total

constitute 25% of the training codes. We calculate 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@10

for ACTFAST and 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@20 for MIMIC-III, considering their

respective average number of ICD9 codes per visit.

We use the CCS multi-level procedure hierarchy1 (𝐿 = 5) as our

knowledge DAG for the ACTFAST dataset, and use the CCS multi-

level diagnosis hierarchy2 (𝐿 = 6) as our knowledge DAG for the

MIMIC-III dataset. We randomly split each dataset into the training,

validation and test sets using 0.7:0.1:0.2 ratio. We train a model with

the training set for 50 epochs, and use the model parameters at the

epoch with the smallest validation loss to evaluate on the test set.

We repeat each experiment for five times with different random

seeds (thus using five different data splits in total). The average test

accuracies and standard deviations are reported in the paper.

1https://www.hcup-us.ahrq.gov/toolssoftware/ccs/AppendixDMultiPR.txt
2https://www.hcup-us.ahrq.gov/toolssoftware/ccs/AppendixCMultiDX.txt
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Table 2: Grouped and overall Accuracy@10 of sequential procedure prediction on ACTFAST data.

Model 0-25 25-50 50-75 75-100 Overall

HAP 0.2135±0.0109 0.4993±0.0143 0.6243±0.0147 0.8001±0.0172 0.5372±0.0045

HAP (lv3) 0.2041±0.0042 0.4973±0.0141 0.6306±0.0123 0.7887±0.0084 0.5331±0.0060

HAP (lv2) 0.2088±0.0075 0.4993±0.0128 0.6285±0.0113 0.8127±0.0134 0.5401±0.0051

Gram 0.1701±0.0065 0.4607±0.0074 0.6137±0.0082 0.8095±0.0122 0.5165±0.0015

Gram (lv3) 0.1933±0.0088 0.4766±0.0141 0.6134±0.0123 0.7743±0.0186 0.5174±0.0056

Gram (lv2) 0.1971±0.0078 0.4987±0.0194 0.6276±0.0028 0.7972±0.0080 0.5331±0.0043

RNN+ 0.1994±0.0073 0.4973±0.0102 0.6358±0.0121 0.7967±0.0103 0.5352±0.0031

RNN 0.1936±0.0060 0.4992±0.0066 0.6409±0.0109 0.8012±0.0092 0.5367±0.0045

Rollup+ 0.1387±0.0063 0.4087±0.0052 0.5743±0.0107 0.7974±0.0106 0.4825±0.0026

Rollup 0.1449±0.0015 0.4123±0.0052 0.5703±0.0148 0.7886±0.0141 0.4817±0.0034

Table 3: Grouped and overall Accuracy@20 of sequential diagnosis prediction on MIMIC-III data.

Model 0-25 25-50 50-75 75-100 Overall

HAP 0.0414±0.0062 0.2179±0.0103 0.3813±0.0119 0.7983±0.0171 0.3619±0.0027

HAP (lv3) 0.0434±0.0033 0.2119±0.0070 0.3884±0.0102 0.8006±0.0118 0.3633±0.0020

HAP (lv2) 0.0428±0.0062 0.2168±0.0091 0.3905±0.0128 0.7970±0.0128 0.3640±0.0027

Gram 0.0426±0.0055 0.2042±0.0081 0.3733±0.0118 0.8084±0.0045 0.3591±0.0044

Gram (lv3) 0.0417±0.0058 0.2127±0.0130 0.3858±0.0148 0.7965±0.0167 0.3614±0.0029

Gram (lv2) 0.0399±0.0058 0.2082±0.0124 0.3838±0.0188 0.8031±0.0116 0.3609±0.0031

RNN+ 0.0399±0.0064 0.2167±0.0147 0.3806±0.0112 0.8044±0.0160 0.3625±0.0028

RNN 0.0298±0.0029 0.1983±0.0070 0.3847±0.0114 0.8104±0.0107 0.3580±0.0028

Rollup+ 0.0308±0.0071 0.1786±0.0146 0.3663±0.0164 0.8022±0.0101 0.3465±0.0039

Rollup 0.0314±0.0050 0.1795±0.0076 0.3674±0.0151 0.8056±0.0036 0.3480±0.0036

5.1.2 Models for comparison: We include the following models for

comparison.

• HAP: The Hierarchical Attention Propagation model.

• HAP (lv3): The proposed HAP model using only the lowest 3

levels of the hierarchy. That is, the bottom-up propagation stops

in level L-2, and the top-down propagation begins from level L-2

too. The assumption is using only lower levels of the hierarchy

can sometimes already provide sufficient domain knowledge

while reducing the computation complexity.

• HAP (lv2): HAP using the lowest 2 levels of hierarchy.

• Gram: The Graph-based Attention Model described in Prelimi-

naries. A leaf code’s embedding g𝑖 is a weighted sum of the basic

embeddings of itself and its ancestors.

• Gram (lv3): The Gram model using only the lowest 3 levels of

the hierarchy. A leaf code’s embedding g𝑖 is a weighted sum of

the basic embeddings of itself and its ancestors within the lowest

3 levels.

• Gram (lv2): Gram using the lowest 2 levels of hierarchy.

• RNN+: A leaf embedding g𝑖 takes its own basic embedding with-

out considering the hierarchy. The basic embeddings are initial-

ized using the GloVe embeddings learned from the cooccurrence

matrix of leaf concepts, and are trained together with the RNN.

• RNN: The same as RNN+ without pretrained initialization.

• Rollup+: The same as RNN+, except that we replace all leaf con-

cepts with their direct parents in CCS multi-level hierarchy. In

other words, all leaf concepts of a parent share the same parent

embedding. This is to compare HAP with a common grouping

scheme.

• Rollup: The same as Rollup+ without pretrained initialization.

We omit recent state-of-the-art methods such as Dipole [20], KAME

[21], since they enhance Gram by using more advanced sequence

modeling techniques in the prediction phase (without modifying

Gram’s graph embedding part), and are orthogonal to our work.

The follow-up work of Gram, MiME [7], is also not compared since

it leverages the additional hierarchical structure between diagnosis

and procedure which is not available in our data. All models are

implemented with Theano and optimized using Adadelta with a

mini-batch size of 100 patients. All models use the same GRU-based

RNN with a hidden size 𝑑ℎ = 400 and a dropout rate of 0.4. The

embedding size 𝑑𝑔 is 400 for all models. For HAP and Gram, the

attention weights W𝑎, b𝑎, u𝑎 have a dimension 𝑑𝑎 = 100.

5.2 Prediction performance

We present the sequential procedure prediction results on ACT-

FAST in Table 2, and present the sequential diagnosis prediction

results on MIMIC-III in Table 3. In both tasks, HAP and its vari-

ants show advantages over other models. The gain is greater for
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less frequent codes. For example, in MIMIC-III, the HAP (lv3) is

nearly 50% more accurate than the RNN baseline in the 0-25 per-

centile range, indicating that learning embeddings from ontology

structures benefits the prediction of rare codes.

Both HAP and Gram leverage the ontology structure, yet Gram

seems to be more sensitive to the number of hierarchy levels used.

By varying the number of hierarchy levels, Gram shows larger per-

formance variances. Especially for ACTFAST, we observe that Gram

has a large drop of accuracies compared to Gram (lv3) and Gram

(lv2). This indicates that Gram is not robust to the number of hier-

archy levels used and requires carefully selecting this number. In

contrast, HAP shows robust performance across different numbers

of hierarchy levels used. One possible explanation is that the use of

higher levels of hierarchy makes a Gram’s leaf embedding confused

about its parent and grandparent (since the attention scheme in

Gram is order-unaware), which on the contrary adds ambiguity

to the leaf embedding. On the other hand, HAP is order-aware,

which means adding more ancestors of a leaf will still respect their

ordering without confusing the leaf embedding.

We also find that HAP and Gram do not always perform the best

using the full hierarchy. This might imply that lower levels of the

hierarchy provide the most important domain knowledge for

predicting leaf codes, which is reasonable since higher levels of

the hierarchy correspond to very broad categories of procedures or

diseases that might not be as useful as those fine categories in lower

levels. For example, knowing that two diagnoses both belong to the

łInfectionž category provides very limited information. Knowing

they are both related to łViral Infectionž provides a little more

information. And knowing that they both belong to łHIV Infectionž

provides the most information.

We did not observe the huge advantage of Gram as in the task

of predicting CCS single-level groups [5]. This might indicate that

Gram’s grouping effect is more suitable for predicting coarse medi-

cal concept groups than predicting exact codes, while HAP keeps

enough distinctness of individual leaf codes during the embedding

learning.

6 RELATEDWORK

Attention mechanism is a widely used framework in neural net-

works to adaptively learn the importance of each component w.r.t.

the target component. It has been successfully used in computer

vision [33], machine translation [31], speech recognition [8], semi-

supervised node classification [32] etc. There has been work that

applies attention mechanism to healthcare problems [5, 6, 20, 21].

Our work is closely related to the Gram model [5] by generalizing

the attention mechanism used to aggregate ancestor information to

a hierarchical mulit-level propagation framework that learns from

the entire DAG.

Our method is related to recent graph representation learning

works such as network embedding [10, 27, 30] and graph neural

networks (GNNs) [2, 9, 16, 18, 28]. Network embedding methods

learn transductive node embeddings through optimizing some loss

functions such that nearby/connected nodes have similar embed-

dings. Network embedding is unsupervised. The learned node em-

beddings can be used in downstream node classification or link

prediction tasks, while the embedding training is separated from

the downstream tasks.

Graph neural networks (GNNs) iteratively pass messages be-

tween a node and its neighbors to extract multiple-hop local sub-

structure features for nodes. GNNs are typically supervised. The

extracted node features are used directly in later tasks so that the su-

pervision signals can train parameters in the message passing layers

in an end-to-end fashion and guide GNNs on how to extract node

features (embeddings). GNNs have gained great popularity in recent

years, achieving state-of-the-art performance on semi-supervised

node classification [16], graph classification [35], network embed-

ding [11], and link prediction [34], etc. Despite the success, little

work has been done on applying GNNs to healthcare. Our model

can be seen as combining an attention-based graph convolution

layer [32] with a particular message passing order respecting the

multi-level hierarchy of the medical ontology, where the design

is inspired by the Belief Propagation algorithm [25] and ensures

incorporating structural information of the entire knowledge DAG.

We did not compare with the extensive literature of GNNs, since

exitsing GNNs are mainly designed to assign similar embeddings to

nearby nodes in an undirected graph by symmetrically passing mes-

sages between nodes, without really considering the hierarchical

structure of medical ontologies.

One noteworthy line of related research is learning hyperbolic

graph embeddings [3, 19, 22, 23]. However, these works only con-

sider the implicit hierarchical structure of real-world graphs to

learn more efficient embeddings, without explicitly leveraging an

ontology. For example, our used medical ontologies have clearly de-

fined root, leaves, and different levels of intermediate nodes, while

such hierarchies are assumed to be latent in the graphs of hyper-

bolic embeddings. There is also recent work studying GNNs for

trees/DAGs [14, 36] with a focus on generating DAGs instead of

learning embeddings of DAG nodes.

7 CONCLUSION

In this paper, we have proposed Hierarchical Attention Propagation

(HAP), a graph attention-basedmethod to learnmedical concept em-

beddings based on medical ontologies. HAP propagates information

hierarchically across the graph. The bottom-up propagation sends

all leaf information to the root node, and the top-down propagation

propagates entire structure information back to leaves. HAP learns

highly expressive embeddings by learning from the full ontology hi-

erarchy, addressing previous work Gram’s limited expressibility.We

have theoretically proved that from any HAP embedding we can re-

cover the entire knowledge DAG, which strictly outperforms Gram

embedding’s expressibility. Experiments on two sequential proce-

dure/diagnosis prediction tasks verified HAP’s superior healthcare

representation learning and prediction performance.
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