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ABSTRACT

In this paper, we propose a next-generation link prediction method,
Weisfeiler-Lehman Neural Machine (Wlnm), which learns topo-
logical features in the form of graph patterns that promote the
formation of links. Wlnm has unmatched advantages including
higher performance than state-of-the-art methods and universal
applicability over various kinds of networks. Wlnm extracts an
enclosing subgraph of each target link and encodes the subgraph
as an adjacency matrix. The key novelty of the encoding comes
from a fast hashing-based Weisfeiler-Lehman (WL) algorithm that
labels the vertices according to their structural roles in the subgraph
while preserving the subgraph’s intrinsic directionality. After that,
a neural network is trained on these adjacency matrices to learn a
predictive model. Compared with traditional link prediction meth-
ods,Wlnm does not assume a particular link formation mechanism
(such as common neighbors), but learns this mechanism from the
graph itself. We conduct comprehensive experiments to show that
Wlnm not only outperforms a great number of state-of-the-art
link prediction methods, but also consistently performs well across
networks with different characteristics.
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1 INTRODUCTION

Link prediction [1] is attracting increasing interests among data
mining and machine learning communities. It has many applica-
tions, such as friend recommendation in social networks [2], prod-
uct recommendation in e-commerce [3], knowledge graph comple-
tion [4], finding interactions between proteins [5], and recovering
missing reactions in metabolic networks [6]. While many sophisti-
cated models such as stochastic block models [5] and probabilistic
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matrix factorization [7] have been developed, some simple heuris-
tics such as common neighbors and Katz index work surprisingly
well in practice and are often more interpretable and scalable. For
instance, the common neighbor heuristic assumes that two nodes
are more likely to have a link if they have more common neighbors.
Although simple, this heuristic has been shown to perform very
well on social networks [1]. Other successful heuristics include
AA [2], RA [8], Katz [9] as well as many carefully calculated node
proximity scores based on network topology or random walks.

However, a significant limitation of these heuristics is that they
lack universal applicability to different kinds of networks. For exam-
ple, common neighbors may work well when predicting friendships
in social networks or predicting coauthorships in collaboration net-
works, but has been shown to have poor performance on electrical
grids and biological networks [10]. On the other hand, Average
Commute Time, a.k.a. resistance distance [11], has exceptional per-
formance on predicting power grids and router-level Internets, but
has poor results on social networks. A survey paper compared over
20 different heuristics and found that none of them performs con-
sistently well across all networks [10]. This implies the need to
manually choose different heuristics for different networks based
on prior beliefs or expensive trial and error.

Can we automatically learn suitable heuristics from a network
itself? The answer is yes, since these heuristics are after all extracted
from the network topology. By extracting local patterns for each
link, we should be able to learn which patterns foster the formation
of a link. This way, various heuristics embedded in the local patterns
can be learned automatically, avoiding the need to manually select
heuristics. Moreover, for those networks on which no existing
heuristic works well, we can learn new heuristics that suit them.
Our goal in this paper is to design such a universal model.

We propose a new link prediction method called Weisfeiler-
Lehman Neural Machine (Wlnm). For each target link, Wlnm first
extracts a subgraph in its neighborhood, which we call the enclosing
subgraph of a link.Wlnm then represents the enclosing subgraph
as an adjacency matrix. After that, a neural network is trained on
these adjacency matrices to learn a link prediction model. Figure 1
illustrates the proposed framework.

To encode each enclosing subgraph, the key issue is to decide the
ordering of graph vertices. The goal of graph labeling is to assign
nodes of two different enclosing subgraphs to similar indices in
respective adjacency matrices if and only if their structural roles
within the graphs are similar. Since machine learning models read
data sequentially, a stable ordering based on structural roles of
vertices is crucial for learning meaningful models.

The Weisfeiler-Lehman (WL) algorithm [12] is a graph labeling
method which determines vertex ordering based on graph topology.
The classical WL algorithm works as follows. Initially, all vertices
get the same label. Then, vertices iteratively concatenate their own
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Figure 1: An illustration of Wlnm. Given a network, Wlnm first

samples a set of positive links (illustrated as link (A, B)) and nega-

tive links (illustrated as link (C, D)) as training links, and extracts an

enclosing subgraph for each link. Graph labeling is used to decide

the vertex ordering and adjacency matrix. The resulting (matrix, la-

bel) pairs are fed into a neural network for link prediction.

labels and their direct neighbors’ labels as their signature strings
and compress these signature strings into new, short labels until
convergence. In the end, vertices with identical structural roles will
get the same labels.

A limitation of the classical WL algorithm is that it requires the
storing and sorting of possibly long signature strings in each itera-
tion, which is time consuming. On the other hand, a hashing-based
WL [13] is much faster, but is no longer stable: the vertex ordering
is not preserved between iterations. To address the above challenge,
we propose a novel Palette-WL graph labeling algorithm, which
combines the efficiency of the hashing-based WL and the order-
preserving property of the classical WL. Palette-WL first colors
subgraph vertices according to their distance to the target link,
and then iteratively refines the initial colors so that the relative
color ordering is preserved. Our results prove that the Palette-WL
algorithm leads to very good enclosing subgraph representations
and is computationally efficient.

To learn nonlinear topological features from the enclosing sub-
graphs, neural network is used for its exceptional expressing power.
Our experiments show that neural networks achieve superior link
prediction performance than heuristic methods, especially on some
datasets where all existing methods perform poorly.

Wlnm has a few distinctive advantages. 1)Higher performance

—Wlnm uses neural networks to learn sophisticated topological
features which simple heuristics cannot express. It outperforms all
baseline methods in almost all datasets we have tested; 2) Univer-
sality—Wlnm automatically learns topological features, avoiding
the need to choose heuristics or do feature selection/engineering
for different networks. Empirical results confirm thatWlnm con-
sistently performs well across various networks, while most other
methods perform well only on a few networks and poorly on others.

We summarize our contributions as follows. 1) We propose
Weisfeiler-Lehman Neural Machine (Wlnm), a novel link prediction
framework to automatically learn topological features from net-
works. 2) We propose a novel graph labeling method, Palette-WL,
to efficiently encode enclosing subgraphs into adjacencymatrices so
that neural networks can learn meaningful patterns. 3) We conduct
extensive experiments on various kinds of real-world networks and
compareWlnm to 12 heuristic and latent feature methods. Wlnm

Table 1: Popular Heuristics for Link Prediction

Name Formula Order

common neighbors |Γ(x ) ∩ Γ(y ) | first

Jaccard |Γ(x )∩Γ(y ) |
|Γ(x )∪Γ(y ) | first

preferential attachment |Γ(x ) | · |Γ(y ) | first

Adamic-Adar
∑
z∈Γ(x )∩Γ(y )

1
log |Γ(z ) | second

resource allocation
∑
z∈Γ(x )∩Γ(y )

1
|Γ(z ) | second

Katz
∑∞
l=1 β

l |path(x, y ) = l | high

PageRank qxy + qyx high

SimRank γ
∑
a∈Γ(x )

∑
b∈Γ(y )score(a,b )

|Γ(x ) |·|Γ(y ) | high

resistance distance 1
l+xx +l

+
yy−2l+xy

high

Notes: Γ(x ) denotes the neighbor set of vertex x . β < 1 is a damping factor.
|path(x, y ) = l | counts the number of length-l paths between x and y . qxy is the
stationary distribution probability of y under the random walk from x with restart,
see [14]. SimRank score is a recursive definition. l+xy is the (x, y ) entry of the
pseudoinverse of the graph’s Laplacian matrix.

outperforms state-of-the-art link prediction methods and offers
great universality across various networks.

2 PRELIMINARIES

In this section, we introduce some background knowledge in link
prediction and graph theory, which are important for understanding
the proposed Wlnm method.

2.1 Heuristic methods for link prediction

A large category of link prediction methods are based on some
heuristics that measure the proximity between nodes to predict
whether they are likely to have a link. Popular heuristics include:
common neighbors (CN), Adamic-Adar (AA) [2], preferential at-
tachment (PA) [15], resource allocation (RA) [8], Katz [9], PageRank
[14], SimRank [16], resistance distance [11], and their numerous
variants. Liben-Nowell and Kleinberg [1] first studied their link
prediction performance on social networks. Empirical comparisons
of these heuristics on different networks can be found in [10, 17].
We group link prediction heuristics into three classes: first-order,
second-order and high-order methods, based on the most distant
node necessary for computing the heuristic. For example, common
neighbor is a first-order heuristic, since it only involves the direct
neighbors of the two nodes. Katz index is a high-order heuristic,
because one needs to search the entire graph for all possible paths
between two vertices. Table 1 summarizes nine popular heuristics,
which will be used as baselines in our experiments.

2.2 Graphs

A network can be represented as a graph G = (V ,E), where V =
{v1, ...,vn } is the set of vertices and E ⊆ V ×V is the set of links. A
graph can be represented by an adjacency matrixA, whereAi, j = 1
if there is a link from i to j andAi, j = 0 otherwise. We say i and j are
adjacent ifAi, j = 1. If the links are undirected,Awill be symmetric.
In this paper, we consider undirected networks, although our model
can be easily generalized to directed networks.We use Γ(x ) or Γ1 (x )
to denote the set of 1-hop neighbors of a vertex x ∈ V . We use
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Algorithm 1 Weisfeiler-lehman Graph Labeling

1: input: graph G = (V ,E), initial colors c0 (v ) = 1 for all v ∈ V
2: output: final colors c (v ) for all v ∈ V
3: let c (v ) = c0 (v ) for all v ∈ V
4: while c (v ) has not converged do

5: for each v ∈ V do

6: collect a multiset {c (v ′) |v ′ ∈ Γ(v )} containing its neigh-
bors’ colors

7: sort the multiset in ascending order
8: concatenate the sorted multiset to c (v ) to generate a sig-

nature string s (v ) = ⟨c (v ), {c (v ′) |v ′ ∈ Γ(v )}sort⟩
9: end for

10: sort all s (v ) in lexicographical ascending order
11: map all s (v ) to new colors 1,2,3,... sequentially; same strings

get the same color
12: end while
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Figure 2: Illustration of two iterations of the WL algorithm for a

graph. The vertices in the upper left graph are initially all colored

1. In each iteration, step 1 calculates the WL signature string for

each vertex by concatenating the color of the vertex and the (sorted)

colors of the vertex’s neighbors. Step 2 recolors the graph according

to these WL signatures.

Γd (x ) to denote the set of vertices whose distance to x is less than
or equal to d , d = 1, 2, 3, · · · .

2.3 The Weisfeiler-Lehman algorithm

A graph labeling function is a map l : V → C from vertices V
to an ordered set C , conventionally called colors in literature. In
this paper, we adopt the set of integer colors starting from 1. If l
is injective, then C can be used to uniquely determine the vertex
order in an adjacency matrix.

Our proposed Palette-WL graph labeling method is based on
the 1-dimensional Weisfeiler-Lehman (WL) algorithm [12], shown
in Algorithm 1. Widely used in graph isomorphism checking, WL
belongs to a class of color refinement algorithms that iteratively
update vertex colors until a fixed point is reached.

The main idea of WL is to iteratively augment vertex labels using
their neighbors’ labels and compress the augmented labels into new
labels until convergence. At first, all vertices are set to the same
color 1. For each vertex, it gets a signature string by concatenating
its own color and the sorted colors of its immediate neighbors.
Vertices are then sorted by the ascending order of their signature
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Figure 3: Illustration of the WL coloring for another graph. Com-

paring the vertex orderings in Figure 2 and Figure 3, we see that

vertices with similar structural roles have similar relative rankings.

strings and assigned new colors 1, 2, 3, · · · . Vertices with the same
signature strings get the same color.

For example, assume vertex x has color 2 and its neighbors
have colors {3, 1, 2} respectively, and vertex y has color 2 and its
neighboring colors are {2, 1, 2}. The signature strings for x and y
are ⟨2, 123⟩ and ⟨2, 122⟩, respectively. Since ⟨2, 122⟩ is smaller than
⟨2, 123⟩ lexicographically, y will be assigned a smaller color than
x in the next iteration. Such process is iterated until vertex colors
stop changing. Figure 2 shows an example. All vertices are initially
colored 1 and finally colored by a richer set {1, · · · , 5}.

One key benefit of the WL algorithm is that the final colors
encode the structural roles of vertices inside a graph and define a
relative ordering for vertices (with ties)—vertices with the same final
color share the same structural role within a graph. Moreover, this
relative ordering for vertices is consistent across different graphs—
e.g., if vertex v in G and vertex v ′ in G ′ share similar structural
roles in their corresponding graphs, they will have similar relative
positions in their respective orderings, which is shown in Figure 3.
The structure-encoding property of WL is essential for its success
in graph kernel design [18], which measures graph similarity by
counting vertices’ matching WL colors. Recently, WL is also used
in graph CNNs to define a global ordering for sequentially moving
convolutional filters along vertices and a local ordering for reading
each receptive field [19].

3 WEISFEILER-LEHMAN NEURAL MACHINE

(WLNM)

In this section, we propose our Wlnm model. Wlnm is a neural
network model combined with encoded subgraph patterns. It auto-
matically learns topological features that promote the formation of
links from each link’s local subgraph pattern.

To encode the subgraph patterns, we propose Palette-WL, a
variant of WL that is fast and order-preserving. Palette-WL lever-
ages the ability of the classical WL to label vertices according to
their structural roles, but also preserves vertices’ initial relative
ordering defined by their distance to the target link, a property that
is crucial for link prediction. Wlnm further leverages the superior
expressive power of neural networks to learn possibly complicated
link formation mechanisms which are difficult to model by heuristic
scores. As a result, Wlnm has remarkable prediction performance
and universality.

Wlnm includes the following three main steps:

(1) Enclosing subgraph extraction, which generates K-vertex
neighboring subgraphs of links.
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Algorithm 2 Enclosing Subgraph Extraction

1: input: target link (x ,y), network G, integer K
2: output: enclosing subgraph G (VK ) for (x ,y)
3: VK = {x ,y}
4: fringe = {x ,y}
5: while |VK | < K and |fringe| > 0 do
6: fringe = (

⋃
v ∈fringe Γ(v )) \VK

7: VK = VK ∪ fringe

8: end while

9: return enclosing subgraph G (VK )

(2) Subgraph pattern encoding, which represents each subgraph
as an adjacency matrix whose vertex ordering is given by
our Palette-WL graph labeling algorithm.

(3) Neural network training, which learns nonlinear graph topo-
logical features for link prediction.

3.1 Enclosing subgraph extraction

To learn topological features from a network,Wlnm extracts an en-
closing subgraph for each link, and use these ⟨subgraph, link⟩ pairs
as training data. The enclosing subgraph of each link describes the
“surrounding environment" of that link, which we assume contains
topological information deciding whether a link is likely to exist.

For a given link, its enclosing subgraph is a subgraph within
the neighborhood of that link. The size of the neighborhood is
described by the number of vertices in the subgraph, which is
denoted by a user-defined integer K . We describe the procedure for
extracting the enclosing subgraph in the following.

For a given link between x and y, we first add their 1-hop neigh-
bor vertices Γ(x ) and Γ(y) to an ordered node listVK . Then, vertices
in Γ2 (x ), Γ2 (y), Γ3 (x ), Γ3 (y), · · · , are iteratively added to VK until
|VK | ≥ K or there are no more neighbors to add. Algorithm 2 shows
the enclosing subgraph extraction process.

After running the extraction algorithm, the number of vertices
in VK may not be exactly K . One way to unify the size is to discard
the last added |VK | −K vertices if |VK | > K . In this paper, we adopt
a different strategy. Inspired by [19], we first use graph labeling to
impose an ordering for VK , and then reorder VK using this order.
After that, if |VK | > K , the bottom |VK | − K vertices are discarded.
If |VK | < K , we add K − |VK | dummy nodes to VK . This way, the
sizes of different enclosing subgraphs are unified to K .

WhenK ≥ |Γ(x )∪Γ(y)∪x ∪y |, the enclosing subgraph contains
all the information needed for calculating first-order heuristics
in Table 1. When K ≥ |Γ2 (x ) ∪ Γ2 (y) ∪ x ∪ y |, it contains the
information needed for second-order heuristics. When K equals
|V |, the extracted subgraph encompasses all first-order, second-
order and high-order heuristics. This gives an intuitive explanation
why Wlnm outperforms heuristic methods.

3.2 Subgraph pattern encoding

Subgraph pattern encoding is to represent each enclosing subgraph
as an adjacency matrix with a particular vertex ordering, so that
the neural network in Wlnm can read the data in sequence. We
illustrate the process of subgraph pattern encoding in Figure 4, and
explain the details below.

3.2.1 Palette-WL for vertex ordering. We use graph labeling
to determine the vertex ordering for each enclosing subgraph. To

facilitate the training of neural networks, the vertex orderings
generated by the graph labeling algorithm should be consistent
across different subgraphs, e.g., vertices receive similar rankings if
their relative positions and structural roles within their respective
subgraphs are also similar. We will describe our proposed Palette-
WL algorithm and explain why we adopt it in the following.

We first formally state our two intuitive requirements for the
graph labeling algorithm used here as follows.

(1) It should impose vertex orderings such that two nodes with
similar structural roles in their respective enclosing sub-
graphs have similar rankings.

(2) It should distinguish the “target link” in each enclosing sub-
graph and preserve the topological directionality within the
enclosing subgraph.

The first requirement is important, since it allows machine learn-
ing models to sequentially read vertices of enclosing subgraphs in a
stable order. It can be satisfied by the classical WL algorithm, since
WL ranks vertices according to their structural roles (as exempli-
fied by Figure 2 and 3). However, the classical WL does not meet
the second requirement. Namely, it cannot distinguish the target

link from other parts of the enclosing subgraph. This is because
WL treats all vertices equally in the beginning. From the final WL
colors, we cannot tell which colors encode the two nodes of the
target link. Such a limitation will make the training meaningless.

We further explain the importance of the second requirement as
follows. Unlike ordinary graphs, enclosing subgraphs have intrinsic
directionality: at the center is the target link, other vertices and
edges are iteratively added outwards based on their distance to the
central link. A good graph labeling algorithm should be able to re-
flect this directionality, e.g., 1) the two central vertices always have
the smallest colors; 2) vertices closer to the center link have smaller
colors than farther ones. Such directionality is crucial for defining
meaningful vertex orderings. If a graph labeling method does not
keep this directionality, the generated vertex representation may
be very poor for link prediction.

We will propose a Palette-WL algorithm that meets both re-
quirements above. To formalize our analysis, we first give the defi-
nition of color-order preservingness.

Definition 3.1. An iterative graph labeling algorithm is color-
order preserving if: given any two vertices va and vb , if va has a
smaller color than vb at an iteration, then va gets a smaller color
than vb in the next iteration.

A color-order preserving algorithm has the following benefit
when used as a graph labeling method:

Corollary 3.2. If a graph labeling algorithm is color-order pre-

serving, then the vertices’ final color ordering still observes their initial

color ordering. In other words, if vertex va ’s initial color is smaller

than vb ’s, va ’s final color is still smaller than vb ’s final color.

Remember that we need the final vertex ordering of an enclosing
subgraph to reflect the vertices’ distance to the target link. This
can be achieved if we initially label vertices based on the ascending
order of their distance to the target link, and then run a color-order
preserving algorithm to refine their labels.

For instance, we can initially assign color 1 to the two vertices
of the target link, color 2 to the link’s 1-hop neighbors, color 3 to
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Figure 4: Illustration of the Wlnm procedure: enclosing subgraph extraction (the leftmost figure), subgraph pattern encoding (the middle

three figures), and neural network training (the rightmost figure).

the link’s 2-hop neighbors, etc., and then run color refinement on
these initial colors. The color-order preserving property ensures
that the final labels still observe the distance ordering. Moreover,
since the two vertices from the target link have the smallest initial
color, they are guaranteed to have smaller final colors than all other
vertices. This means that a target link is always encoded as A1,2 in
its enclosing subgraph.

Color-order preservingness is a much desired property for the
graph labeling algorithm inWlnm to have. Fortunately, we have
the following theorem.

Theorem 3.3. The classical 1-dimensional WL algorithm is color-

order preserving.

Proof. At the ith iteration of the WL algorithm (given in Al-
gorithm 1), consider any pair of vertices va and vb , and assume
their current colors are ci (va ) and ci (vb ), respectively. Their sig-
nature strings si (va ) and si (vb ) are ⟨ci (va ), {ci (x ) |x ∈ Γ(va )}sort⟩
and ⟨ci (vb ), {ci (x ) |x ∈ Γ(vb )}sort⟩, respectively. If ci (va ) < ci (vb ),
then si (va ) is lexicographically smaller than si (vb ) regardless of
their latter letters. Therefore, we have ci+1 (va ) < ci+1 (vb ). □

Thus, the classical WL algorithm is an eligible graph labeling
algorithm for Wlnm. However, it requires storing, reading, and
sorting of the vertices’ signature strings, which is often prohibitively
expensive since the signature strings can be very long for nodes
with high degree.

Recently, a fast hashing-based WL algorithm was proposed [13].
It uses a perfect hash function h(x ) to map unique signatures to
unique real values. As a result, vertices can be iteratively partitioned
using their hash values instead of the signature strings, which is
shown to be much faster than the classical WL algorithm [13].

The hash function for vertex x is as follows:

h(x ) = c (x ) +
∑

z∈Γ(x )

log(P (c (z))), (1)

where c (x ) and c (z) are integer colors, P is the list of all primes,
where P (n) is the nth prime number. It can be shown that, given
two vertices x and y, h(x ) = h(y) if and only if: 1) c (x ) = c (y); and
2) Γ(x ) and Γ(y) contain the same colors with the same cardinality
(same WL signature⇔ same new color).

Albeit much faster than the classical WL, the above hashing-
based WL is not color-order preserving. In other words, although
vertices can be partitioned according to structural roles, their final
colors do not define a meaningful ordering. Besides, the colors
generated by the above WL sometimes do not converge in our

experiments. That is, two vertices may start to exchange their
colors from some iteration on and never stop. To address the above
issues as well as preserving the efficiency of the hashing-based WL,
we propose the Palette-WL algorithm. It is a color refinement
method equipped with a modified hash function:

h(x ) = c (x ) +
1⌈∑

z′∈VK log(P (c (z′)))
⌉ ·
∑

z∈Γ(x )

log(P (c (z))), (2)

where
⌈
·
⌉
is the ceiling operation that gives the smallest integer

greater than the input,VK is the vertex set of the enclosing subgraph
to be labeled.

Now we prove that Palette-WL is color-order preserving.

Theorem 3.4. The WL algorithm with the hash function in (2)

(Palette-WL)

(1) has perfect hashing, i.e., h(x ) = h(y) if and only if: 1) c (x ) =
c (y); and 2) Γ(x ) and Γ(y) contain the same colors with the

same cardinality; and

(2) is color-order preserving.

Proof. We first prove the perfect hashing property, following
a similar argument as in [13]. To prove the first direction (h(x ) =
h(y) ⇒ two conditions), we see that h(x ) = h(y) means:

c (x ) − c (y) =

∑
z∈Γ(y ) log(P (c (z))) −

∑
z∈Γ(x ) log(P (c (z)))⌈∑

z′∈VK log(P (c (z′)))
⌉ . (3)

We exponentiate both sides and write Nx := Πz∈Γ(x )P (c (z)),
Ny := Πz∈Γ(y )P (c (z)), Z :=

⌈∑
z′∈VK log(P (c (z′)))

⌉
(note that

they are all integers). Then we have

eZ (c (x )−c (y )) = Ny/Nx . (4)

On the left-hand side of the above equation, Z (c (x ) − c (y)) is an
integer. We know that all integral powers of e are irrational except
for e0. On the right-hand side, Ny/Nx is rational, which means that
we must have c (x ) = c (y) (the first condition) and eZ (c (x )−c (y )) = 1.
Thus we have Nx = Ny . Since Nx and Ny are integers, their prime
factorizations must be the same. This implies that the two multisets
{c (z) |z ∈ Γ(x )} and {c (z) |z ∈ Γ(y)} coincide (the second condition).
This proves the first direction. The opposite direction can be easily
proved using the definition of h(x ).

To prove that it is color-order preserving, we consider any pair
of vertices x and y. Assume their colors at the ith iteration have
ci (x ) < ci (y). Note that ci (x ) and ci (y) are integers, which implies
that ci (x ) + 1 ≤ ci (y).
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Algorithm 3 The Palette-WL Algorithm

1: input: enclosing subgraphG (VK ) centered at target link (x ,y),
which is extracted by Algorithm 2

2: output: final colors c (v ) for all v ∈ VK
3: calculate d (v ) :=

√
d (v,x ) · d (v,y) for all v ∈ VK

4: get initial colors c (v) = f (d (v))
5: while c (v) has not converged do

6: calculate hashing values h(v ) for all v ∈ VK by (2)
7: get updated colors c (v) = f (h(v))
8: end while

1

9: return c (v)

We have:

hi (x ) = ci (x ) +
1⌈∑

z′∈VK log(P (ci (z′)))
⌉ ·
∑

z∈Γ(x )

log(P (ci (z)))

< ci (x ) + 1 ≤ ci (y) ≤ hi (y), (5)

which means hi (x ) < hi (y). Therefore, in the next iteration we are
guaranteed to have ci+1 (x ) < ci+1 (y). □

We call it Palette-WL because the labeling process is like to
draw initial colors from a palette to vertices, and then iteratively
refine them by mixing their original colors and nearby colors in
such a way that the colors’ relative ordering is preserved. We show
the complete steps of Palette-WL in Algorithm 3. Vertices are first
assigned initial colors according to their geometric mean distance
to the vertices x and y of the target link. Then the initial colors
are iteratively refined using the hash function in (2). To facilitate
expression, we define f : RK → CK , which maps K real numbers
to K colors. f first maps the smallest real number to color 1, and
then maps the second smallest real number to color 2, and so on. If
two or more real numbers are equal to each other, they are mapped
to the same color. Such process is repeated until every real number
is mapped to a color. We use d (va ,vb ) to denote the length of the
shortest path between va and vb .

Finally, we sort the vertices inVK using their Palette-WL colors
in ascending order. If there are vertices with the same color, we use
Nauty, a graph canonization tool, to break the ties [20].

3.2.2 Represent enclosing subgraphs as adjacencymatrices. Given
an enclosing subgraph G (VK ), Wlnm represents it as an upper tri-
angular adjacency matrix whose vertex ordering is decided byVK ’s
Palette-WL colors. After that, the adjacency matrix is vertically
read and input to a fully-connected neural network.

To further increase the flexibility of Wlnm, we can relax the
1/0 entries of adjacency matrix by letting them encode other infor-
mation. In our experiments, we set Ai, j = 1/d ((i, j ), (x ,y)) where
d ((i, j ), (x ,y)) is the length of the shortest path to reach link (i, j )
from link (x ,y).

3.3 Neural network learning

Training. After we encode the enclosing subgraphs, the next step
in Wlnm is to train a classifier. To learn sophisticated nonlinear
patterns, we resort to neural networks due to their unprecedented
representation capability. For a given network G = (V ,E), we first
construct the positive samples by selecting all edges (x ,y) ∈ E.
Then, we construct negative samples by randomly selecting α |E |
1There will be at most K iterations; see Lemma 3.6

pairs of x ,y ∈ V such that (x ,y) < E. For a given training link (x ,y)
(positive or negative),Wlnm first extracts its enclosing subgraph
and then encodes the enclosing subgraph into an adjacency matrix
using the proposed Palette-WL algorithm. The adjacency matrices
are vertically fed into a feedforward neural network together with
their labels (1: (x ,y) ∈ E, 0: (x ,y) < E).

Note that the entry A1,2 (shown as a star in Figure 4) should not
be fed into the neural network, because it records the existence of
the link (x ,y). Although A1,2 can be either 1 or 0 during training,
A1,2 is always 0 when we are predicting an unknown link. Adding
this “class label” in our inputs will make the prediction on all testing
links biased towards 0 (nonexistence).

Testing (link prediction). After training the neural network, we
can predict the existence of a testing link by extracting its enclosing
subgraph, encoding it using Palette-WL, and feeding the resulting
adjacency matrix to the neural network. Finally, a prediction score
between 0 and 1 is output for each testing link, which represents
the estimated probability of the testing link being positive.

3.4 Discussions

The following analysis shows that 1) the colors generated by Palette-
WL are guaranteed to converge; and 2) the adjacency matrices can
be constructed efficiently.

Theorem 3.5. If a color refinement algorithm is color-order pre-

serving, then given any vertex v , its color is non-decreasing over

iterations.

Proof. Consider any vertex v whose color c (v ) = k . We can
prove the result by induction on k . When k = 1, v already has the
smallest color, so its color is non-decreasing in the next iteration.
Now consider the case when c (v ) = k + 1 and, in the next iter-
ation, its color is reduced to a color l < k + 1. Since every color
in {1, 2, ...,k + 1} has been assigned to at least one vertex, let v ′
be one such vertex whose color is l . By the induction hypothesis,
v ′ will get a color larger than or equal to l , which contradicts the
color-order preserving requirement. □

Lemma 3.6. For a graph with K vertices, the Palette-WL algo-

rithm takes at most K iterations to converge.

Proof. Theorem 3.5 implies that the total number of colors
does not decrease. Assume the algorithm has not converged at an
iteration, there must be a vertex that has its current color c changed.
By Theorem 3.5, it must increase its color. If c is already the largest
color, increasing it will increase the color number. Otherwise, the
vertex must increase c to some existing color c ′. Due to the color-
order preserving property, vertices that originally have color c ′
must increase their colors, too. Repeating this argument we see that
finally the total number of colors must be increased. In either case,
the color number increases at least by 1 in each iteration. Since
there are at most K different colors in the end, the iteration number
is bounded by K . □

In each iteration, we need to compute the hash function for each
vertex by (2), which takes at most O (K ) time. Evaluating K hash
functions needs O (K2) time (or O ( |E |) time if using sparse matrix-
matrix multiplications, where E is the edge set of this graph). And
the sorting needs O (K logK ) time. Thus, the time complexity of
each iteration is O (K2). Given Lemma 3.6, we have the following.
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Figure 5: Visualization experiments for a 3-regular graph (left), a preferential attachment graph (middle), and a USAir network (right). In

each block, the top left figure depicts the network, the bottom left visualizes the weight matrix trained on the network’s enclosing subgraphs.

Four example enclosing subgraphs are displayed beside them, including two most frequent positive enclosing subgraphs (the first row) and

two randomly generated negative enclosing subgraphs (the second row). In each enclosing subgraph, two red diamonds correspond to the

target link. The enclosing subgraph size K is set to 6, 9, 6 for the three networks, respectively.

Theorem 3.7. For a graph with K vertices, the Palette-WL algo-

rithm has O (K3) time complexity.

The above results show that we can encode the enclosing sub-
graphs efficiently. We have three additional notes. First, after run-
ning Palette-WL, ties can be broken by running Nauty, which
has an average time complexity of O (K ) [21]. Second, there ex-
ists O (( |E | + |V |) log |V |) time implementation of WL using some
special data structure [22]. However, the resulting WL is not color-
order preserving. Third, subgraph pattern encoding is naturally
parallelizable, which can further promote the scalability of Wlnm.

4 RELATEDWORK

Link prediction [1] has been a hot topic for the past decade in data
mining. Existing link prediction methods can be mainly categorized
into two types: topological feature-based and latent feature-based.
Topological feature-based methods predict links based on some
local or global node similarity heuristics. Popular measures include
common neighbors [1], Katz index [9], Adamic-Adar index [2], and
PageRank [1]. We have surveyed them in Table 1. These heuristics
do not perform well when the similarity scores do not capture the
network’s latent formation mechanisms. Latent feature-based meth-
ods predict links based on their latent features or latent groups,
which can be extracted through low-rank decomposition of net-
work’s adjacency matrix [3], or trained by fitting some probabilistic
models [5]. Popular latent feature-based methods include: matrix
factorization [23]; ranking methods [24] which treat link prediction
as a learning to rank problem; and stochastic block models [5, 25],
which assume that nodes have latent groups and links are deter-
mined by the group memberships of nodes. Latent feature-based
methods focus more on individual nodes than network topologies,
thus cannot explain how networks are formed.

There has been research studying extracting local patterns from
graphs to build graph kernels [26]. However, to the best of our
knowledge, no existing research extracts subgraphs for link predic-
tion. The use of graph labeling methods to impose a vertex ordering
is introduced in [19]. In that paper, local subgraphs are extracted
for nodes to define receptive fields around node pixels in order to
learn a convolutional neural network for graph classification. Our
paper extracts local subgraphs around links instead of node pixels,

and our task is to predict the existence of links instead of classi-
fying graphs. Moreover, we analyzed in-depth a particular graph
labeling method, the Weisfeiler-Lehman algorithm, and proposed a
new efficient and color-order preserving variant, Palette-WL, to
meet the special requirements for link prediction learning. Graph
labeling, especially WL, has also been used to design efficient graph
kernels [18].

5 EXPERIMENTAL RESULTS

In this section, we conduct two types of experiments: a visualization
on small datasets, and a performance comparison on real-world
networks. All codes and datasets are publicly available at https:
//github.com/muhanzhang/LinkPrediction.

5.1 Visualization

We use two small artificial datasets and a real-world air line net-
work [27] to visualize the learning ability of Wlnm. Here, for visu-
alization purpose, we only train a logistic regression model on the
enclosing subgraphs. Figure 5 depicts the networks, some extracted
enclosing subgraphs, and the learned weights.

As we can see,Wlnm successfully extracts the building blocks
for each network, and the weight patterns indicate how links in
different networks are likely to form. For example, we observe that
the most frequent positive enclosing subgraph of the USAir net-
work is a clique. This makes sense since big cities tend to establish
dense airline connections with other big cities too. The second most
frequent one is also illustrative, as it depicts the pattern of four
small cities connecting to two big cities.

We also display the Palette-WL labels for vertices of the enclos-
ing subgraphs. As we can see, vertices 1 and 2 always correspond
to the target link. Other vertices’ labels characterize their struc-
tural roles within the subgraph and also preserve the enclosing
subgraph’s directionality.

Note that the visualized weights for the toy datasets are merely
learned from a linear classifier. When the link formation mecha-
nisms are complex, the need to learn sophisticated nonlinear fea-
tures urges us to use neural networks in real-world experiments.

5.2 Experiments on real-world networks

To evaluate the performance of Wlnm, we compare it with 12
baselines on eight real-world networks.
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Table 2: AUC results of 12 baseline methods, Wllr, and Wlnm

Data CN Jac. AA RA PA Katz RD PR SR SBM MF-c MF-r Wllr10 Wlnm10 Wlnm20

USAir 0.940 0.903 0.950 0.956 0.894 0.931 0.898 0.944 0.782 0.944 0.918 0.849 0.896 0.958 0.961

NS 0.938 0.938 0.938 0.938 0.682 0.940 0.582 0.940 0.940 0.920 0.636 0.720 0.862 0.984 0.981

PB 0.919 0.873 0.922 0.923 0.901 0.928 0.883 0.935 0.773 0.938 0.930 0.943 0.827 0.933 0.939
Yeast 0.891 0.890 0.891 0.892 0.824 0.921 0.880 0.927 0.914 0.914 0.831 0.881 0.854 0.956 0.951

C.ele 0.848 0.792 0.864 0.868 0.755 0.864 0.740 0.901 0.760 0.867 0.832 0.844 0.803 0.859 0.854
Power 0.590 0.590 0.590 0.590 0.441 0.657 0.845 0.664 0.763 0.665 0.524 0.517 0.778 0.848 0.874

Router 0.561 0.561 0.561 0.561 0.471 0.378 0.926 0.380 0.367 0.857 0.779 0.783 0.897 0.944 0.915
E.coli 0.932 0.806 0.952 0.958 0.912 0.929 0.889 0.954 0.637 0.939 0.909 0.916 0.894 0.971 0.976

Ranking 7.875 10.625 7.500 6.875 12.875 7.125 10.375 5.125 11.000 5.625 10.500 9.500 10.125 2.500 2.375

Datasets.We use eight datasets: USAir, NS, PB, Yeast, C.ele, Power,
Router, and E.coli. USAir is a network of US Air lines [27]. NS is a
collaboration network of researchers who publish papers on net-
work science [28]. PB is a network of US political blogs [29]. Yeast
is a protein-protein interaction network in yeast [30]. C.ele is a
neural network of C. elegans [31]. Power is an electrical grid of
western US [31]. Router is a router-level Internet [32]. E.coli is a
pairwise reaction network of metabolites in E. coli [33]. We include
the dataset statistics in Table 3. In each dataset, all existing links
are randomly split into a training set (90%) and a testing set (10%).
Other potential edges are treated as unknown links. Area under
the ROC curve (AUC) is adopted to measure the link prediction
performance, which can be understood as the probability that a
random positive link from the testing set has a higher score than a
random unknown link.

Baselines and experimental setting. We compared Wlnm with
nine heuristic methods in Table 1. They are: common neighbors
(CN), Jaccard (Jac.), Adamic-Adar (AA), resource allocation (RA),
preferential attachment (PA), Katz, resistance distance (RD), PageR-
ank (PR), and SimRank (SR). In addition, we also compared Wlnm
with three latent feature models: stochastic block model (SBM) [5],
matrix factorization using a classification loss function (MF-c), and
matrix factorization using a regression loss function (MF-r). For
Katz, we set the damping factor β to 0.001. For PageRank, we set
the damping factor d to 0.85 as suggested by [14]. For Katz and
PageRank, we also tested β = 0.01 and d = 0.7. The results are very
similar and thus not reported. For SBM, we use the implementation
of [25]. For MF, we use the libFM [34] software. The number of
latent groups of SBM is searched in {4, 6, 8, 10, 12}. The number of
latent factors of MF is searched in {5, 10, 15, 20, 50}. The best result
is reported for each dataset.

For the proposed Wlnm, we report subgraph sizes K = 10
(Wlnm10) and K = 20 (Wlnm20). We randomly sample from the
unknown links to construct negative examples. We set the number
of sampled negative links to be twice of the given positive training
links. The link prediction performance is evaluated on the testing
set as well as a sampled set of unknown links which is also twice
as large. The sampling is performed so that the training and testing
links do not overlap. For the neural network structure, we use three
fully-connected hidden layers with 32, 32, 16 hidden neurons re-
spectively and a softmax layer as the output layer. Rectified linear
unit (ReLU) is adopted as the activation function for all hidden
layers. We adopt the Adam update rule [35] for optimization with

Table 3: Comparison of different graph labeling methods

(K=10). Palette-WL (PWL
c
) performs the best on all datasets.

Data |V | |E | PWLc PWL1 HWLc Nauty Rand
USAir 332 2126 0.958 0.777 0.758 0.767 0.607
NS 1589 2742 0.984 0.896 0.881 0.896 0.738
PB 1222 16714 0.933 0.730 0.726 0.725 0.609
Yeast 2375 11693 0.956 0.774 0.743 0.764 0.654
C.ele 297 2148 0.859 0.609 0.634 0.631 0.555
Power 4941 6594 0.848 0.647 0.665 0.641 0.550
Router 5022 6258 0.944 0.557 0.622 0.555 0.640
E.coli 1805 14660 0.971 0.863 0.857 0.838 0.773

a learning rate of 0.001 and a mini-batch size of 128. We set the
number of training epochs to be 100. The model parameters with
the best results on 10% validation splits of the training set are used
to predict the testing links. The neural network is implemented
using Torch [36]. To demonstrate the strength of neural networks,
we also train a logistic regression model on the same enclosing
subgraphs (under K = 10, we call this model Wllr10).

All experiments are ran 10 times on a 12-core Linux server which
has two NVIDIA TITAN GPUs with 6GB memory each. Under this
configuration, 10 runs of Wlnm on all datasets finish in 2.5 hours.
The average AUC results are reported in Table 2.

Results. From Table 2, we can observe the following.Wlnm gen-
erally performs much better than other baselines in terms of AUC.
It outperforms all 12 baselines on USAir, NS, Yeast, Power, Router,
and E.coli by a large margin. Most remarkably,Wlnm performs
very well on the two difficult datasets: Power and Router, on which
most other methods can only perform slightly better than random
guessing. This suggests that Wlnm is able to learn “novel” topo-
logical features which current heuristics cannot express. Another
interesting finding is that, for all the 12 baseline methods, none of
them can perform well on all datasets. In comparison,Wlnm per-
forms consistently well—it has an AUC greater than 0.85 across all
datasets, and often, the result is over 0.95. We also find that Wlnm
is robust under the variation of K . Its performance is similarly good
for K=10, 20, 30, and 40 (not all reported).

To demonstrate the universality of Wlnm, we calculate the rank-
ings of all the methods based on AUC for each dataset, and append
the average ranking of each method (over all datasets) to Table
2. Compared to other methods, Wlnm shows substantial overall
advantages, having the best average ranking of less than 2.5.
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To further show the importance of Palette-WL in subgraph
pattern encoding, we compare it to other four graph labeling meth-
ods under K = 10 in Table 3. Here, PWLc denotes our Palette-WL
method with initial distance-based colors. To show the usefulness
of distance-based initial coloring, we compare Palette-WL with
all vertices colored 1 initially PWL1. To show the consequence of a
WL that is not color-order preserving, we report the performance
of HWLc , which uses the hashing function in (1). As we can see, its
performance is much worse than PWLc , since it cannot preserve
the relative ordering of vertices and thus resulting in chaotic final
labelings. Finally, we also report the results by directly applying
Nauty to get a canonical labeling for each subgraph (Nauty), and
randomly ordering the vertices (Rand). We also did experiments
using the classical WL algorithm and saw very similar results to
PWLc . However, on datasets PB and E.coli, WL cannot finish in 2
hours whereas Palette-WL finishes in minutes. Thus we do not list
the results here. From Table 3, we can see that PWLc outperforms
all other variants by a large margin.

6 CONCLUSIONS

In this paper, we have proposed a next-generation link prediction
method, Weisfeiler-Lehman Neural Machine (Wlnm), which learns
topological features from networks by extracting links’ local enclos-
ing subgraphs. To properly encode a link’s enclosing subgraph, we
have proposed an efficient graph labeling algorithm called Palette-
WL to impose an order on subgraph vertices based on their struc-
tural roles and the subgraph’s intrinsic directionality. After that, a
neural network is trained on the adjacency matrices to learn non-
linear topological features for link prediction. Experimental results
have shown thatWlnm gives unprecedentedly strong performance
compared to 12 state-of-the-art methods. Moreover,Wlnm exhibits
great generality, i.e. the ability to automatically learn complex net-
work topological features, as it performs consistently well across
different networks.
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