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Abstract

Neural networks are typically designed to deal with data in
tensor forms. In this paper, we propose a novel neural network
architecture accepting graphs of arbitrary structure. Given a
dataset containing graphs in the form of (G, y) where G is a
graph and y is its class, we aim to develop neural networks
that read the graphs directly and learn a classification function.
There are two main challenges: 1) how to extract useful fea-
tures characterizing the rich information encoded in a graph
for classification purpose, and 2) how to sequentially read a
graph in a meaningful and consistent order. To address the first
challenge, we design a localized graph convolution model and
show its connection with two graph kernels. To address the
second challenge, we design a novel SortPooling layer which
sorts graph vertices in a consistent order so that traditional
neural networks can be trained on the graphs. Experiments
on benchmark graph classification datasets demonstrate that
the proposed architecture achieves highly competitive per-
formance with state-of-the-art graph kernels and other graph
neural network methods. Moreover, the architecture allows
end-to-end gradient-based training with original graphs, with-
out the need to first transform graphs into vectors.

1 Introduction

The past few years have seen the growing prevalence of
neural networks on application domains such as image classi-
fication (Alex, Sutskever, and Hinton 2012), natural language
processing (Mikolov et al. 2013), reinforcement learning
(Mnih et al. 2013), and time series analysis (Cui, Chen, and
Chen 2016). The connection structure between layers makes
neural networks suitable for processing signals in tensor
forms where the tensor elements are arranged in a mean-
ingful order. This fixed input order is a cornerstone for neural
networks to extract higher-level features. For example, if we
randomly shuffle the pixels of an image shown in Figure 1,
then state-of-the-art convolutional neural networks (CNN)
fail to recognize it as an eagle.

Although images and many other types of data are natu-
rally presented with order, there is another major category of
structured data, namely graphs, which usually lack a tensor
representation with fixed ordering. Examples include molecu-
lar structures, knowledge graphs, biological networks, social
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Figure 1: A consistent input ordering is crucial for CNNs.

networks, and text documents with dependencies. The lack
of ordered tensor representations limits the applicability of
neural networks on graphs. In this paper, we aim at designing
novel neural network structures that can accept graphs and
learn predictive functions.

Recently, there is a growing interest in generalizing neural
networks to graphs. (Bruna et al. 2013) generalized convo-
lutional networks to graphs in the spectral domain, where
filters are applied on a graph’s frequency modes computed
by graph Fourier transform. This transformation involves
expensive multiplications with the eigenvector matrix of the
graph Laplacian. To reduce the computation burden, (Def-
ferrard, Bresson, and Vandergheynst 2016) parameterized
the spectral filters as Chebyshev polynomials of eigenvalues,
and achieved efficient and localized filters. One limitation of
the above spectral formulations is that they rely on the fixed
spectrum of the graph Laplacian, and thus are suitable only
for graphs with a single structure (and varying signals on ver-
tices). Spatial formulations, on the contrary, are not restricted
to a fixed graph structure. To extract local features, several
works independently proposed to propagate features between
neighboring vertices. (Duvenaud et al. 2015) proposed differ-
entiable Neural Graph Fingerprints, which propagate features
between 1-hop neighbors to simulate the traditional circular
fingerprint. (Atwood and Towsley 2016) proposed Diffusion-
CNN, which propagates neighbors with different hops to the
center using different weights. Later, (Kipf and Welling 2016)
developed a first-order approximation of the spectral convolu-
tion in (Defferrard, Bresson, and Vandergheynst 2016) which
also resulted in propagation between neighboring vertices.
(Niepert, Ahmed, and Kutzkov 2016) proposed another way
of spatial graph convolution by extracting fixed-sized local
patches from nodes’ neighborhoods and linearizing these
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patches with graph labeling methods and graph canonization
tools. The resulting algorithm is called PATCHY-SAN.

Since spatial methods do not require a single graph struc-
ture, they can be applied to both node classification and
graph classification tasks. Although achieving state-of-the-
art node classification results (Atwood and Towsley 2016;
Kipf and Welling 2016), most previous works have relatively
worse performance on graph classification tasks. One rea-
son for this is that after extracting localized vertex features,
these features are directly summed up as a graph-level fea-
ture used for graph classification (Duvenaud et al. 2015;
Defferrard, Bresson, and Vandergheynst 2016).

In this paper, we propose a new architecture that can keep
much more vertex information and learn from the global
graph topology. A key innovation is a new SortPooling layer,
which takes as input a graph’s unordered vertex features from
spatial graph convolutions. Instead of summing up these
vertex features, SortPooling arranges them in a consistent
order, and outputs a sorted graph representation with a fixed
size, so that traditional convolutional neural networks can
read vertices in a consistent order and be trained on this
representation. As a bridge between graph convolution layers
and traditional neural network layers, the SortPooling layer
can backpropagate loss gradients through it, integrating graph
representation and learning into one end-to-end architecture.

Our contributions in this paper are as follows. 1) We pro-
pose a novel end-to-end deep learning architecture for graph
classification. It directly accepts graphs as input without the
need of any preprocessing. 2) We propose a novel spatial
graph convolution layer to extract multi-scale vertex features,
and draw analogies with popular graph kernels to explain why
it works. 3) We develop a novel SortPooling layer to sort the
vertex features instead of summing them up, which can keep
much more information and allows us to learn from the global
graph topology. 4) Experimental results on benchmark graph
classification datasets show that our Deep Graph Convolu-
tional Neural Network (DGCNN) is highly competitive with
state-of-the-art graph kernels, and significantly outperforms
many other deep learning methods for graph classification.

2 Deep Graph Convolutional Neural

Network (DGCNN)

DGCNN has three sequential stages: 1) graph convolution
layers extract vertices’ local substructure features and define
a consistent vertex ordering; 2) a SortPooling layer sorts the
vertex features under the previously defined order and unifies
input sizes; 3) traditional convolutional and dense layers read
the sorted graph representations and make predictions. We
show the DGCNN architecture in Figure 2.

We use A to denote the adjacency matrix of a graph, and
n the number of vertices. We consider only simple graphs in
this paper, i.e., A is a symmetric 0/1 matrix, and the graph
has no self-loops. Suppose each vertex has a c-dimensional
feature vector, we use X ∈ R

n×c to denote the graph’s node
information matrix with each row representing a vertex. For
graphs with vertex labels or attributes, X can be the one-hot
encoding matrix of the vertex labels or the matrix of multi-
dimensional vertex attributes. For graphs without vertex

labels, X can be defined as a column vector of normalized
node degrees. We call a column in X a feature channel of
the graph, thus the graph has c initial channels. In the rest of
the paper, we use Pi to denote the ith row of any matrix P,
and Pij to denote the entry (i, j) of P. For a vertex v, we
use Γ(v) to denote the set of v’s neighboring nodes.

2.1 Graph convolution layers

Proposed form Given a graph A and its node information
matrix X ∈ R

n×c, our graph convolution layer takes the
following form:

Z = f(D̃−1ÃXW), (1)

where Ã = A + I is the adjacency matrix of the graph
with added self-loops, D̃ is its diagonal degree matrix with
D̃ii =

∑
j Ãij , W ∈ R

c×c′ is a matrix of trainable graph
convolution parameters, f is a nonlinear activation function,
and Z ∈ R

n×c′ is the output activation matrix.
The graph convolution can be separated into four steps.

First, a linear feature transformation is applied to the node
information matrix by XW , mapping the c feature channels
to c′ channels in the next layer. The filter weights W are
shared among all vertices. The second step, ÃY where
Y := XW propagates node information to neighboring
vertices as well as the node itself. To see this, we notice that
(ÃY)i =

∑
j ÃijYj = Yi +

∑
j∈Γ(i)Yj , i.e., the ith row

of the resulting matrix is the summation of Yi itself and Yj

from i’s neighboring nodes. The third step normalizes each
row i by multiplying D̃−1ii, in order to keep a fixed feature
scale after graph convolution. The last step applies a point-
wise nonlinear activation function f and outputs the graph
convolution results.

The graph convolution aggregates node information in
local neighborhoods to extract local substructure information.
To extract multi-scale substructure features, we stack multiple
graph convolution layers (1) as follows

Zt+1 = f(D̃−1ÃZtWt), (2)

where Z0 = X, Zt ∈ R
n×ct is the output of the tth graph

convolution layer, ct is the number of output channels of
layer t, and Wt ∈ R

ct×ct+1 maps ct channels to ct+1 chan-
nels. After multiple graph convolution layers, we add a layer
to concatenate the output Zt, t = 1, . . . , h horizontally to
form a concatenated output, written as Z1:h := [Z1, . . . ,Zh],
where h is the number of graph convolution layers and
Z1:h ∈ R

n×∑h
1 ct . In the concatenated output Z1:h, each

row can be regarded as a “feature descriptor” of a vertex,
encoding its multi-scale local substructure information.

Note that our graph convolution form is similar to the
spectral filter proposed in (Kipf and Welling 2016) – it also
propagates neighboring nodes to center except for using a
different propagation matrix. In fact, our graph convolution
form (1) also has a spectral formulation. We will discuss
their relations and differences in detail in the supplemen-
tary material and show that our graph convolution form is a
theoretically closer approximation to the Weisfeiler-Lehman
algorithm (Weisfeiler and Lehman 1968). But firstly, let’s
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look at why (1) can be used for graph classification. Below,
we show that Z1:h contains rich structural information of
the graph by drawing analogies with two popular graph ker-
nels. Moreover, we will show that the last graph convolution
layer’s output Zh can be used to sort the graph vertices in a
consistent order based on vertices’ structural roles.

Connection with Weisfeiler-Lehman subtree kernel
The Weisfeiler-Lehman subtree kernel (Shervashidze et al.
2011) is a state-of-the-art graph kernel, which leverages the
Weisfeiler-Lehman (WL) algorithm (Weisfeiler and Lehman
1968) as a subroutine to extract multi-scale subtree features
for graph classfication.

The basic idea of WL is to concatenate a vertex’s color
with its 1-hop neighbors’ colors as the vertex’s WL signature,
and then sort the signature strings lexicographically to assign
new colors. Vertices with the same signature are assigned the
same new color. A WL signature characterizes the height-1
subtree rooted at a vertex. The procedure is repeated until
the colors converge or reaching some maximum iteration h.
In the end, vertices with the same converged color share the
same structural role within the graph and cannot be further
distinguished. A vertex color at any iteration t uniquely
corresponds to a height-t subtree rooted at the vertex.

WL is widely used in graph isomorphism checking: if two
graphs are isomorphic, they will have the same multiset of
WL colors at any iteration. The WL subtree kernel uses this
idea to measure the similarity between two graphs G and G′
as follows:

k(G,G′) =
h∑

t=0

∑

v∈V

∑

v′∈V ′
δ(ct(v), ct(v′)), (3)

where ct(v) is the (integer) color of vertex v in the tth itera-
tion, and δ(x, y) = 1 if x = y and 0 otherwise. That is, it
counts the common colors of two graphs in all iterations. The
intuition is that two graphs are similar if they have many com-
mon subtrees rooted at their vertices, which are characterized
by colors (same color ⇔ same WL signature ⇔ same rooted
subtree). The WL subtree kernel counts the common colors
until iteration h in order to compare two graphs at multiple
scales.

To show the relation between the graph convolution in
(1) and the WL subtree kernel, we rewrite Y := XW, and
decompose (1) row-wise as follows:

Zi = f([D̃−1Ã]iY) = f(D̃−1ii (Yi +
∑

j∈Γ(i)Yj)). (4)

In (4), we can view Yi as a continuous color of vertex
i. In analogy to WL, (4) also aggregates Yi and its neigh-
boring colors Yj into a WL signature vector D̃−1ii (Yi +∑

j∈Γ(i)Yj). The nonlinear function f maps unique WL
signature vectors to unique continuous new colors if f is in-
jective. Therefore, the graph convolution (1) may be viewed
as a “soft” version of the WL algorithm.

Now we have seen that the graph convolution output Zt
i

for vertex i is a continuous and vectorized version of the
integer colors ct(v) in (3). DGCNN differs from the WL
subtree kernel in how it uses the colors. DGCNN horizontally

concatenates these colors Zt as Z1:h, and trains models on
them instead of calculating kernel functions as in (3).

The soft version of WL has two benefits over the original
WL. First, the convolution parameters W allow hierarchical
feature extraction of nodes’ original information matrix X,
and are trainable through backpropagation, enabling better
expressing power than the WL subtree kernel. Second, the
soft WL is easy to compute using sparse matrix multiplica-
tion, avoiding the need to read and sort the possibly very long
WL signature strings.

Connection with propagation kernel Instead of operat-
ing on integer node labels, the propagation kernel (PK) (Neu-
mann et al. 2012; 2016) compares the label distributions
between two graphs. PK is equipped with a diffusion update
scheme:

Lt+1 = TLt, where T = D−1A. (5)

T = D−1A is the transition matrix of a random walk on
graph A, and Lt ∈ R

n×c contains the c-dimensional label
distribution vectors of the n vertices in the tth iteration. In PK,
initial labels are diffused over iterations. The final similarity
is computed by mapping distribution vectors from all itera-
tions into discrete bins based on locality-sensitive hashing,
and counting common integer bins. PK has similar graph
classification performance to WL and even better efficiency.

Our proposed graph convolution (1) adopts a propagation
matrix D̃−1Ã which is very similar to that of PK, except for
preserving nodes’ self-information over iterations.

In summary, our graph convolution model (1) effectively
mimics the behavior of two popular graph kernels, which
helps explain its graph-level classification performance. The
connection between discrete WL, continuous optimization,
and random walks have also been studied in (Boldi et al. 2006;
Kersting et al. 2014; Kipf and Welling 2016) etc.

2.2 The SortPooling layer

The main function of the SortPooling layer is to sort the
feature descriptors, each of which represents a vertex, in
a consistent order before feeding them into traditional 1-D
convolutional and dense layers.

The question is by what order should we sort the ver-
tices? In image classification, pixels are naturally arranged
with some spatial order. In text classification, we can use
dictionary order to sort words. In graphs, we can sort ver-
tices according to their structural roles within the graph.
(Niepert, Ahmed, and Kutzkov 2016) used graph labeling
methods, especially WL, to sort vertices in a preprocessing
step, since the final WL colors define an ordering based on
graph topology. This vertex ordering imposed by WL is con-
sistent across graphs, meaning that vertices in two different
graphs will be assigned similar relative positions if they have
similar structural roles in their respective graphs. Conse-
quently, neural networks can read graph nodes in sequence
and learn meaningful models.

In DGCNN, we also aim to use such WL colors to sort
vertices. Luckily, we have seen that the outputs of the graph
convolution layers are exactly the continuous WL colors
Zt, t = 1, . . . , h. We can use them to sort the vertices.
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Figure 2: The overall structure of DGCNN. An input graph of arbitrary structure is first passed through multiple graph convolution
layers where node information is propagated between neighbors. Then the vertex features are sorted and pooled with a
SortPooling layer, and passed to traditional CNN structures to learn a predictive model. Features are visualized as colors.

Following this idea, we invent a novel SortPooling layer.
In this layer, the input is an n × ∑h

1ct tensor Z1:h, where
each row is a vertex’s feature descriptor and each column is
a feature channel. The output of SortPooling is a k ×∑h

1ct
tensor, where k is a user-defined integer. In the SortPooling
layer, the input Z1:h is first sorted row-wise according to Zh.
We can regard this last layer’s output as the vertices’ most re-
fined continuous WL colors, and sort all the vertices using
these final colors. This way, a consistent ordering is imposed
for graph vertices, making it possible to train traditional neu-
ral networks on the sorted graph representations. Ideally, we
need the graph convolution layers to be deep enough (mean-
ing h is large), so that Zh is able to partition vertices into
different colors/groups as finely as possible.

The vertex order based on Zh is calculated by first sorting
vertices using the last channel of Zh in a descending order.
If two vertices have the same value in the last channel, the
tie is broken by comparing their values in the second to last
channel, and so on. If ties still exist, we continue comparing
their values in Zh−1

i , Zh−2
i , and so on until ties are broken.

Such an order is similar to the lexicographical order, except
for comparing sequences from right to left.

In addition to sorting vertex features in a consistent order,
the next function of SortPooling is to unify the sizes of the
output tensors. After sorting, we truncate/extend the output
tensor in the first dimension from n to k. The intention is
to unify graph sizes, making graphs with different numbers
of vertices unify their sizes to k. The unifying is done by
deleting the last n− k rows if n > k, or adding k − n zero
rows if n < k.

As a bridge between graph convolution layers and tradi-
tional layers, SortPooling has another great benefit in that it
can pass loss gradients back to previous layers by remem-
bering the sorted order of its input, making the training of
previous layers’ parameters feasible. In comparison, since
(Niepert, Ahmed, and Kutzkov 2016) sorts vertices in the
preprocessing step, their parameter training cannot take place
before sorting. We show how to do backpropagation for
SortPooling in the supplementary material.

2.3 Remaining layers

After SortPooling, we get a tensor Zsp of size k×∑h
1ct with

each row representing a vertex and each column representing
a feature channel. To train CNNs on them, we first reshape
Zsp into a k(

∑h
1ct)× 1 vector row-wise. Then we add a 1-D

convolutional layer with filter size and step
∑h

1ct, in order
to sequentially apply filters on vertices’ feature descriptors.
After that, several MaxPooling layers and 1-D convolutional
layers are added in order to learn local patterns on the node
sequence. Finally, we add a fully-connected layer followed
by a softmax layer.

3 Related Work

Graph Kernels Graph kernels make kernel machines
such as SVMs feasible for graph classification by com-
puting some positive semidefinite graph similarity mea-
sures, which have achieved state-of-the-art classification re-
sults on many graph datasets (Vishwanathan et al. 2010;
Shervashidze et al. 2011). A pioneering work was intro-
duced as the convolution kernel in (Haussler 1999), which
decomposes graphs into small substructures and computes
kernel functions by adding up the pair-wise similarities be-
tween these components. Common types of substructures
include walks (Vishwanathan et al. 2010), subgraphs (Kriege
and Mutzel 2012), paths (Borgwardt and Kriegel 2005), and
subtrees (Shervashidze et al. 2011; Neumann et al. 2016).
(Orsini, Frasconi, and De Raedt 2015) reformulated many
well-known substructure-based kernels in a general way
called graph invariant kernels. (Yanardag and Vishwanathan
2015) proposed deep graph kernels which learn latent rep-
resentations of substructures to leverage their dependency
information. Convolution kernels compare two graphs based
on all pairs of their substructures. Assignment kernels, on
the other hand, tend to find a correspondence between parts
of two graphs. (Bai et al. 2015) proposed aligned subtree ker-
nels incorporating explicit subtree correspondences. (Kriege,
Giscard, and Wilson 2016) proposed the optimal assignment
kernels for a type of hierarchy-induced kernels. Most ex-
isting graph kernels focus on comparing small local pat-
terns. Recent studies show comparing graphs more glob-
ally can improve the performance (Kondor and Pan 2016;



Morris, Kersting, and Mutzel 2017). (Dai, Dai, and Song
2016) represented each graph using a latent variable model
and then explicitly embedded them into feature spaces in a
way similar to graphical model inference. The results com-
pared favorably with standard graph kernels in both accuracy
and efficiency.

DGCNN is closely related to a type of graph kernels based
on structure propagation, especially the Weisfeiler-Lehman
(WL) subtree kernel (Shervashidze et al. 2011) and the prop-
agation kernel (PK) (Neumann et al. 2016). To encode the
structural information of graphs, WL and PK iteratively up-
date a node’s feature based on its neighbors’ features. WL
operates on hard vertex labels, while PK operates on soft
label distributions. As this operation can be efficiently im-
plemented as a random walk, these kernels are efficient on
large graphs. Compared to WL and PK, DGCNN has addi-
tional parameters W between propagations which are trained
through end-to-end optimization. This allows supervised fea-
ture learning from the label information, making it different
from the two-stage framework of graph kernels.

Neural networks for graphs There are two lines of re-
search on generalizing neural networks to graphs: 1) given
a single graph structure, infer signals in graph forms
or infer labels of individual nodes (Scarselli et al. 2009;
Bruna et al. 2013; Henaff, Bruna, and LeCun 2015; Li et
al. 2015; Defferrard, Bresson, and Vandergheynst 2016;
Kipf and Welling 2016); and 2) given a set of graphs
with different structure and sizes, learn to predict the
class labels of unseen graphs (the graph classification prob-
lem) (Duvenaud et al. 2015; Atwood and Towsley 2016;
Niepert, Ahmed, and Kutzkov 2016; Simonovsky and Ko-
modakis 2017; Lei et al. 2017). In this paper, we focus on the
second problem, which is more difficult because the graph
structure is not fixed, nor is the number of nodes within each
graph. Moreover, unlike the first problem where vertices
from different graphs have fixed indices or are in correspon-
dence, a problem-specific vertex ordering is often unavailable
in the second problem.

Our work is related to a pioneering work using CNNs for
graph classification, called PATCHY-SAN (Niepert, Ahmed,
and Kutzkov 2016). To mimic the behavior of CNNs on
images, PATCHY-SAN first extracts fixed-sized local patches
from vertices’ neighborhoods as the receptive fields for con-
volution filters. Then, in order apply CNNs on these patches,
PATCHY-SAN uses external software, such as the graph can-
onization tool NAUTY (McKay and Piperno 2014), to define
a global vertex order for the whole graph and a local order
for each patch in a preprocessing step. After that, graphs
are transformed to ordered tensor representations and a CNN
is trained on these tensors. Although achieving competitive
results with graph kernels, the drawbacks of this approach
include heavy data preprocessing and reliance on external
software. Our DGCNN inherits its idea of imposing an order
for graph vertices, but integrates this step into the network
structure, namely the SortPooling layer.

DGCNN is also related to the Graph neural networks
(GNNs) (Scarselli et al. 2009; Li et al. 2015), Diffusion-CNN
(Atwood and Towsley 2016), and Neural Graph Fingerprints

(Duvenaud et al. 2015) in how to extract node features. How-
ever, to perform graph-level classification, GNNs supervise a
single node, and Diffusion-CNN and Neural Graph Finger-
prints use summed node features. In comparison, DGCNN
sorts vertices with some order and applies traditional CNNs
on the ordered representations, which keeps much more in-
formation and enables learning from global graph topology.

4 Discussion

One important criterion of graph neural network design is
that the network should map isomorphic graphs to the same
representation and output the same prediction, otherwise
any permutation in the adjacency matrix could result in a
different prediction for a same graph. For summing-based
methods, this is not an issue, as summing is invariant to
vertex permutation. However, for sorting-based methods
DGCNN and PATCHY-SAN (Niepert, Ahmed, and Kutzkov
2016), additional care is required. To ensure that isomorphic
graphs are preprocessed to the same tensor, PATCHY-SAN first
uses the WL algorithm and then leverages NAUTY, a graph
canonization tool (McKay and Piperno 2014). Although
NAUTY is efficient enough for small graphs, the problem of
graph canonization is theoretically at least as computationally
hard as graph isomorphism checking.

In comparison, we show that such a graph canonization
step can be avoided in DGCNN. DGCNN sorts vertices using
the last graph convolution layer’s outputs, which we show
can be viewed as the continuous colors output by a “soft”
WL. Thus, DGCNN is able to sort vertices as a by-product
of graph convolution, which avoids explicitly running the
WL algorithm like PATCHY-SAN. Moreover, due to the sort-
ing scheme in SortPooling, graph canonization is no longer
needed.

Theorem 1. In DGCNN, if two graphs G1 and G2 are iso-
morphic, their graph representations after SortPooling are
the same.

Proof. Notice that the first phase’s graph convolutions are in-
variant to vertex indexing. Thus if G1 and G2 are isomorphic,
they will have the same multiset of vertex feature descriptors
after graph convolution. Since SortPooling sorts vertices in
such a way that two vertices have a tie if and only if they have
exactly the same feature descriptor, the sorted representation
is invariant to which of the two vertices is ranked higher.
Hence, G1 and G2 have the same sorted representation after
SortPooling.

Therefore, DGCNN needs to explicitly run neither WL nor
NAUTY, which frees us from data preprocessing and external
software, and provides a pure neural network architecture
for end-to-end graph classification. We also comment that
although DGCNN sorts vertices dynamically during training,
the vertex order will gradually become stable with increas-
ing training epochs. This is because the parameters W are
shared among all vertices. The updating of W will increase
or decrease the continuous WL colors of all vertices simul-
taneously. Moreover, the learning rate of W is iteratively
decayed during training, making the overall vertex order
stable over the course.
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Table 1: Comparison with graph kernels.
Dataset MUTAG PTC NCI1 PROTEINS D&D

Nodes (max) 28 109 111 620 5748
Nodes (avg.) 17.93 25.56 29.87 39.06 284.32
Graphs 188 344 4110 1113 1178

DGCNN 85.83±1.66 58.59±2.47 74.44±0.47 75.54±0.94 79.37±0.94

GK 81.39±1.74 55.65±0.46 62.49±0.27 71.39±0.31 74.38±0.69
RW 79.17±2.07 55.91±0.32 >3 days 59.57±0.09 >3 days
PK 76.00±2.69 59.50±2.44 82.54±0.47 73.68±0.68 78.25±0.51
WL 84.11±1.91 57.97±2.49 84.46±0.45 74.68±0.49 78.34±0.62

5 Experimental Results

We conduct experiments on benchmark datasets to evaluate
the performance of DGCNN against state-of-the-art graph ker-
nels and other deep learning approaches. The code and data
are available at https://github.com/muhanzhang/DGCNN.

5.1 Comparison with graph kernels

Datasets We use five benchmark bioinformatics datasets
to compare the graph classification accuracy of DGCNN with
graph kernels. The datasets are: MUTAG, PTC, NCI1, PRO-
TEINS, D&D. We include detailed dataset information in
the supplementary material. All the five datasets are vertex-
labeled.

Baselines and experimental setting We compare DGCNN
with four graph kernels: the graphlet kernel (GK) (Sher-
vashidze et al. 2009), the random walk kernel (RW) (Vish-
wanathan et al. 2010), the propagation kernel (PK) (Neumann
et al. 2012), and the Weisfeiler-Lehman subtree kernel (WL)
(Shervashidze et al. 2011). Due to the large literature, we
could not compare to every graph kernel, but to some classi-
cal ones and those closely related to our approach. Following
the conventional settings, we performed 10-fold cross val-
idation with LIBSVM (Chang and Lin 2011) (9 folds for
training and 1 fold for testing) using one training fold for
hyperparameter searching, and repeated the experiments for
10 times (thus 100 runs per dataset). The average accura-
cies and their standard deviations are reported. We searched
the height parameter of WL and PK in {0, 1, 2, 3, 4, 5}, and
set the bin width w of PK to 0.001. We set the size of the
graphlets for GK to 3. We set the decay parameter λ of RW
to the largest power of 10 that is smaller than the recipro-
cal of the squared maximum node degree as suggested in
(Shervashidze et al. 2011).

For the proposed DGCNN, to make a fair comparison with
graph kernels, we used a single network structure on all
datasets, and ran DGCNN using exactly the same folds as
used in graph kernels in all the 100 runs of each dataset. The
network has four graph convolution layers with 32, 32, 32,
1 output channels, respectively. For convenience, we set the
last graph convolution to have one channel and only used this
single channel for sorting. We set the k of SortPooling such
that 60% graphs have nodes more than k. The remaining
layers consist of two 1-D convolutional layers and one dense

layer. The first 1-D convolutional layer has 16 output chan-
nels followed by a MaxPooling layer with filter size 2 and
step size 2. The second 1-D convolutional layer has 32 output
channels, filter size 5 and step size 1. The dense layer has
128 hidden units followed by a softmax layer as the output
layer. A dropout layer with dropout rate 0.5 is used after the
dense layer. We used the hyperbolic tangent function (tanh)
as the nonlinear function in graph convolution layers, and rec-
tified linear units (ReLU) in other layers. Stochastic gradient
descent (SGD) with the ADAM updating rule (Kingma and
Ba 2014) was used for optimization. The only hyperparam-
eters we optimized are the learning rate and the number of
training epochs (details in the supplementary material). We
implemented SortPooling and graph convolution layers using
Torch (Collobert, Kavukcuoglu, and Farabet 2011) as stan-
dard nn modules, which can be seamlessly added to existing
Torch architectures.

Results Table 1 lists the results. As we can see, although a
single structure was used for all datasets, DGCNN achieved
highly competitive results with the compared graph kernels,
including achieving the highest accuracies on MUTAG, PRO-
TEINS, and D&D. Compared to WL, DGCNN has higher
accuracies on all datasets except for NCI1, indicating that
DGCNN is able to utilize node and structure information more
effectively. Note that the height parameters in PK and WL
were tuned individually for each dataset by searching from
{0,1,2,3,4,5}, while DGCNN used a single height h=4 for
all datasets. Thus, we expect better performance if we use
different structures for different datasets.

We compare the efficiency of DGCNN with one of the most
efficient graph kernels, the WL kernel, on D&D, the bench-
mark dataset with the largest graph size. We omit the SVM
training time of WL, since the computing time is dominated
by the kernel computation. WL takes 252 seconds to con-
struct the kernel matrix. For DGCNN, the training time varies
with the iteration number. Here we limit the iteration num-
ber to 10, under which condition DGCNN already achieves
comparable or better accuracy than WL. DGCNN takes 156
seconds, meaning that it is able to achieve competitive ef-
ficiency with the fastest graph kernels. Moreover, DGCNN
is trained through SGD, avoiding the at least quadratic com-
plexity w.r.t. the number of graphs required for graph kernels.
Therefore, we expect to see a much greater advantage when
applying to industrial-scale graph datasets.
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Table 2: Comparison with other deep learning approaches.
Dataset NCI1 PROTEINS D&D COLLAB IMDB-B IMDB-M

Nodes (max) 111 620 5748 492 136 89
Nodes (avg.) 29.87 39.06 284.32 74.49 19.77 13.00
Graphs 4110 1113 1178 5000 1000 1500

DGCNN 74.44±0.47 75.54±0.94 79.37±0.94 73.76±0.49 70.03±0.86 47.83±0.85

PSCN 76.34±1.68 75.00±2.51 76.27±2.64 72.60±2.15 71.00±2.29 45.23±2.84
DCNN 56.61±1.04 61.29±1.60 58.09±0.53 52.11±0.71 49.06±1.37 33.49±1.42
ECC 76.82 – 72.54 – – –
DGK 62.48±0.25 71.68±0.50 – 73.09±0.25 66.96±0.56 44.55±0.52

DGCNN (sum) 69.00±0.48 76.26±0.24 78.72±0.40 69.45±0.11 51.69±1.27 42.76±0.97

5.2 Comparison with other deep approaches

Datasets We compare DGCNN with other deep learning
approaches for graph classification on six datasets, includ-
ing three benchmark bioinformatics datasets: NCI1, PRO-
TEINS, and D&D, as well as three social network datasets:
COLLAB, IMDB-B, IMDB-M (Yanardag and Vishwanathan
2015). Graphs in these social network datasets do not have
vertex labels, thus are pure structures. We exclude the two
smallest bioinformatics datasets: MUTAG and PTC, which
only have a few hundred examples, since deep learning meth-
ods easily overfit them, reporting abnormally high variance
in previous works (Niepert, Ahmed, and Kutzkov 2016).

Baselines and experimental setting We compare DGCNN
with four other deep learning approaches: including three
recent neural network approaches for graph classification
(PSCN, DCNN, and ECC), and a deep graph kernel ap-
proach (DGK). Among them, PATCHY-SAN (PSCN) (Niepert,
Ahmed, and Kutzkov 2016) is the closest to ours. Diffusion-
CNN (DCNN) (Atwood and Towsley 2016) uses diffusion
graph convolutions to extract multi-scale substructure fea-
tures. ECC (Simonovsky and Komodakis 2017) can be
viewed as a hierarchical version of the Neural Fingerprints
(Duvenaud et al. 2015). Both DCNN and ECC use summed
node features for graph classification. The Deep Graphlet
Kernel (DGK) (Yanardag and Vishwanathan 2015) learns
substructure similarities via word embedding techniques. For
PSCN, ECC, and DGK, we report the best results from
the papers, as they were under the same setting as ours.
For DCNN, since the original experiment split the train-
ing/validation/testing data equally, we redid the experiment
using the standard setting. Among these methods, PSCN and
ECC can leverage additional edge features. These augmented
results are not reported here since edge features are missing
from most graph datasets and all the other compared methods
do not leverage edge features.

For DGCNN, we still use the same structure as when com-
paring with graph kernels, in order to show its robust per-
formance across different datasets under a single structure.
Since the new added social network datasets do not contain
node labels, we set the k of SortPooling such that 90% graphs
have nodes more than k in order to compensate the loss of
node features.

Results Table 2 lists the results. DGCNN shows the highest
accuracies on PROTEINS, D&D, COLLAB, and IMDB-M.
Compared to PATCHY-SAN, the improvement of DGCNN can
be explained as follows. 1) By letting gradient information
backpropagate through SortPooling, DGCNN enables param-
eter training even before the sorting begins, thus achieving
better expressibility. 2) By sorting nodes on the fly, DGCNN
is less likely to overfit a particular node ordering. In com-
parison, PATCHY-SAN sticks to a predefined node ordering.
Another huge advantage of DGCNN is that it provides a uni-
fied way to integrate preprocessing into a neural network
structure. This frees us from using any external software.

DGCNN shows significant accuracy improvement over
DCNN which uses summed node features for classification.
Another summing-based method, ECC, is slightly better on
NCI1, but much worse on D&D. These results meet our ex-
pectation since summing will lose much individual node and
global topology information. Compared to DGK, DGCNN
shows better performance on all the reported datasets.

To demonstrate the advantage of SortPooling over sum-
ming, we further list the results of DGCNN (sum), which
replaces the SortPooling and later 1-D convolution layers in
DGCNN with a summing layer. As we can see, the perfor-
mance worsens a lot in most cases. We also conducted some
supplementary experiments in order to further understand the
effect of SortPooling, included in the supplementary material.

6 Conclusions

In this paper, we have proposed a novel neural network ar-
chitecture, DGCNN, for graph classification. DGCNN has a
number of advantages over existing graph neural networks.
First, it directly accepts graph data as input without the need
of first transforming graphs into tensors, making end-to-end
gradient-based training possible. Second, it enables learning
from global graph topology by sorting vertex features instead
of summing them up, which is supported by a novel Sort-
Pooling layer. Finally, it achieves better performance than
existing methods on many benchmark datasets. In the future,
we would like to study different sorting schemes and apply
our method to more datasets.
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